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1 Local periods and the Plancherel formula

Abstract

The global period integrals of the Gan-Gross-Prasad conjectures conjecturally factorize as Euler prod-
ucts of local ”periods” given, à la Ichino-Ikeda, by integrals of matrix coefficients. I will explain how to
understand these local periods in terms of the local Plancherel formula of the corresponding homogeneous
space. This leads to a proof of their positivity when the given representation is distinguished.

1.1 Review of the Ichino-Ikeda conjecture

We will be writing G, H, etc. to denote either Gv, Hv (points over a local field) or GpAkq, HpAkq.
The Ichino-Ikeda conjecture can be stated as:

Global period “? ¨
ś

v local periods.

Here we have a spherical pair G Ą H, and by “period” we mean an HpAkq-, resp. Hpkvq-biinvariant
pairing:

π b π̃ Ñ C,

where π is an irreducible admissible representation, and π̃ denotes its dual.
(We prefer this “bilinear” formulation; notice that a hermitian structure on π is an isomorphism: π̃ » π̄,

where π̄ denotes the complex conjugate.)
The factor ? is a “global” rational factor which can seemingly be understood in terms of the relative trace

formula. We will not discuss it.
The Euler product should be understood in terms of partial L-values. Namely, at almost every place the

evaluation of the local period will give a quotient LXpπvq of special values of L-functions, and the product
should be understood as:

LSXpπq ¨
ź

vPS

(local period at v),

for any large enough finite set S of places.
The global period on an automorphic representation π is given by the integral over rHs (well-defined,

say, when π is the space of a cuspidal representation).
The local periods are specified when πv is tempered; for non-tempered representations the conjecture is

not so clear. We will discuss the notion of temperedness below.
For a tempered representation πv the local period is given as:

πv b π̃v Q φv b φ̃v ÞÑ

ż

Hv

〈
πvphqφv, φ̃v

〉
dh. (1.1)

Remark 1. On measures: we will be fixing local measures throughout satisfying certain natural compatibility
assumptions. Globally, we assume that they are Tamagawa measures.

The goal of this talk is to analyze and understand this local period.
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1.2 Relative characters

There is a dual notion to that of the period, namely the notion of a “relative character”. If X “ HzG
(and assume for now that Xpkvq “ HpkvqzGpkvq as happens in the Gan-Gross-Prasad periods) then we set
MpXvq “ the space of Schwartz measures on Xv. A relative character is any bilinear form onMpXq which
factors through a map:

MpXq bMpXq Ñ π b π̃ Ñ C, (1.2)

were π is an irreducible admissible representation and the last arrow is the canonical pairing.
(Explain duality.)
Specifying the period is equivalent to specifying the relative character:

Lemma 1.2.1. There is a canonical bijection between periods and spherical characters for a fixed representation.

Proof. The passage from periods to relative characters is obvious. For the inverse, notice that any two
factorizations of a relative character as in (1.2) have to coincide. Indeed, their difference is a morphism:

MpXq bMpXq Ñ ker 〈 〉 Ă π b π̃,

but since π is assumed irreducible the only GˆG-invariant subspace of ker 〈 〉 is the zero subspace.

Given this lemma, we will from now on be working mostly with relative characters instead of periods,
keeping in mind that a description for one implies a description for the other.

1.3 Abstract Plancherel theorem

Assume that X carries an invariant measure dx, which we fix, then we get an isomorphism: MpXq »
SpXq Ă L2pX, dxq, where SpXq denotes the space of Schwartz functions.

Regarding the unitary representation H “ L2pXq of G we have, first of all, the abstract Plancherel
theorem:

Theorem 1.3.1. There is an essentially unique decomposition of H as a Hilbert space direct integral of irre-
ducible unitary representations of G:

H “
ż

Ĝ
Hπµpπq.

Here Ĝ is the unitary dual of G, Hπ is the π-isotypic space (» πb̂ multiplicity) and µpπq is a measure on
Ĝ, the Plancherel measure.

There is a lot to be explained about this abstract theorem.
First of all, the notion of direct integral of (always separable, here) Hilbert spaces requires:

• a measurable space Z;

• a family of Hilbert spaces Z Q z ÞÑ Hz;

• a collection C of sections z ÞÑ ηz P Hz which will be called measurable, with the properties:

1. there is a countable subcollection whose specializations span a dense subspace of Hz for all z;

2. a section η is measurable iff for every measurable section η1 P C the function z ÞÑ 〈ηz, η1z〉 is
measurable.

• a measure on Z.
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Then the Hilbert space is the completion with respect to the following seminorm of the space of measur-
able sections on which it is finite:

}η}2 “

ż

Z
}ηz}

2
Hz
µpzq.

The unitary dual Ĝ of G is the set of isomorphism classes of unitary representations, equipped with the
Fell topology: A representation π is in the closure of a set S Ă G if its diagonal matrix coefficients can be
approximated, uniformly on compacta, by diagonal matrix coefficients of elements of S.

The Fell topology on Ĝ coincides with the natural topology on the spectrum of the C˚-algebra of G.
The spectrum of a C˚-algebra is exactly the set of isomorphism classes of its irreducible (Hilbert space)
representations, and an equivalent definition of its topology is in terms of closures of ideals.

This topology can be difficult to analyze, is not Hausdorff, but fortunately it coincides with the “obvious”
one on the subset of tempered representations – and, conjecturally, on Arthur representations, which are
all that should be relevant to automorphic forms. However, in applications, lack of knowledge of these
conjectures leads to difficulties.

Now a few buzzwords about this abstract Plancherel theorem: The key point here is:

Theorem 1.3.2. For any reductive group over a local field or and adele ring, and every irreducible unitary
representation π, πpCcpGqdgq is contained in the space of compact operators.

In the language of C˚-algebras, this says that the C˚-algebra of the group is liminal/CCR, and this implies
the weaker result that its Von Neumann algebra is of type I. Von Neumann algebras of type I are precisely
those whose “factors” are all “irreducible”, i.e. such that its representations (on Hilbert spaces) admit a
“central decomposition” into “irreducibles tensored by multiplicity”.

The C˚-algebra of a group G is the C˚-envelope of the convolution algebra of L1-measures on G, i.e. the one
induced by the norm:

}f}C˚ :“ sup
π
}πpfq},

where π ranges over all ˚-representations on Hilbert spaces.
The Von Neumann algebra of the group is the Von Neumann envelope of its C˚-algebra (i.e. its weak-* closure in

the direct sum over all representations H of BpHq; notice that BpHq is dual to the space of trace-class operators, hence
the weak-* topology).

1.4 Asymptotics and tempered representations (p-adic case):

For spaces such as those we are considering, there is a much more explicit Plancherel theorem. Moreover, for
the group case, the whole unitary dual is irrelevant: the Plancherel measure is concentrated on the tempered
dual. Although this will not be the case for all homogeneous spaces X that we will encounter, it still seems
to be a general principle that the support of Plancherel measure for L2pXq is concentrated on representation
of Arthur type. More on that later.

We now concentrate on the group case, X “ H, G “ H ˆH.
Let P, P´ be two opposite parabolics of H, L “ P X P´ the common Levi, P “ LU the Levi decomposi-

tion etc. We let HP be the boundary degeneration corresponding to this class of parabolics,

HP » LdiagzpUzH ˆ U´zHq,

and H ˆH-variety of the same dimension as H.

Remark 2. For those more familiar with automorphic forms, compare rGs vs. rGsP . The picture to have in mind
is that H has a compact-mod-center part, the complement of which is modelled by the “very (anti-)dominant
parts” H"P of the various HP . For the notion of “very (anti-)dominant” keep in mind the example of NzSL2
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(affine plane minus the origin). Here, the “very anti-dominant” part is a neighborhood of infinity (as opposed
to the global case, where it is a neighborhood of the cusp, i.e. of zero).

There is a unique universal, H ˆH-equivariant map:

C8pHq Q f ÞÑ fP P C
8pHP q

with the property that f and fP coincide on H", or equivalently on L" embedded “naturally” in both H"

and H"P .
Notice that C8pHP q “ IHˆH

PˆP´
C8pLq. We always use normalized induction. In particular, we have an

action of ZpLq. Due to our normalization of induction, a ZpLq-eigenfunction with unitary eigencharacter on

HP restricts to a multiple of a character satisfying |χ| “ δ
1
2
P on ZpLq.

Fact. If π is an admissible G-representation and π Ñ C8pHP q, then the image of π is ZpLq-finite.

This means that ZpLq will act with generalized eigencharacters. These are the exponents of π (or, more
precisely, of the morphism into C8pHP q. In particular, for an admissible representation τ ofH the exponents
of the composition:

τ b τ̃ Ñ C8pHq Ñ C8pHP q

(where the first map is the matrix coefficient) are called the exponents of τ .
A function is called tempered if for every class P of parabolics as above, it is bounded on L" by a

function with unitary generalized exponents. An irreducible representation τ of H is called tempered if its
matrix coefficients are tempered. The Harish-Chandra Ξ-function is a specific, positive matrix coefficient of
a specific tempered representation with trivial exponents in all directions. Hence, up to logarithmic terms,
it bounds every tempered function.

1.5 Plancherel theorem for the group

We start from the case of X “ H. In this case, relative characters are characters and they have a canonical
normalization:

Lemma 1.5.1. Let π » τ b τ̃ . The following correspond to each other under the obvious duality:

• the matrix coefficient pairing: τ b τ̃ Ñ C8pHq;

• the character of τ : MpHq Q f ÞÑ πpfq P HSpτq » τ b τ̃ Ñ C.

Doubling the variables and choosing a Haar measure on H, we get canonical functionals:

MpHq bMpHq Ñ π b π̃ Ñ C,

the characters.
(Indeed, the above functional applied to µ1 b µ2 is equal to Θπpµ1 ‹ µ

_
2 q.)

Central decomposition

We have an abelian Plancherel decomposition:

L2pHP q “ IndHˆH
PˆP´

L2pLq “ IndHˆH
PˆP´

˜

ż

{ZpLq
L2pL{ZpLq, χqdχ

¸

.
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A representation σ of L such that σ b σ̃ ãÑ L2pL{ZpLq, ωσq is called a discrete series for L. Those define
a direct summand L2pLqdisc of L2pLq.

Thus, it is easy to relate the Plancherel decomposition of L2pHP q to that of L. How can we relate the
Plancherel decomposition of L2pHq to that of L?

The Plancherel measure

Fixing a measure on H, since we have introduced canonical characters we get a canonical measure on Ĝ
satisfying the Plancherel formula:

}Φ}2L2pHq “

ż

Ĝ
}Φdh}2HSpπqµHpπq.

For discrete-mod-center series, this is Haar measure times the formal dimension/degree. It is called this
way because for (finite-dimensional) unitary representations of compact groups it is precisely equal to the
dimension when the measure of the group is normalized to be 1.

For a general family of tempered representations πχ “ IGP pσbχq, where χ varies over unramified unitary
characters of the Levi, what the Plancherel measure is a multiple of a fixed Haar measure on these characters
by factors involving:

• the formal degree of σ;

• a finite group of “automorphisms” of the representation (σ could be isomorphic to σ b χ; and for
w PW pLq we generically have IGP pσq » IGP p

wσq (however, the right measure to fix is such that “locally”
it is equal to a fixed measure on the group of unramified characters then one does not need to mention
this finite group);

• the scalar jpσq by which the standard intertwining operator: IGP pσq Ñ IGP´pσq acts on the standard
hermitian inner product on each of these spaces.

An important remark: jpσq´1 is essentially, conjecturally at least,1 a γ-factor:

|γp0, σ, ǔP , ψq|,

and hence depends only on the L-packet of σ, not the representation itself. The conjecture of Hiraga-Ichino-
Ikeda on formal degrees predicts that this is the case also for the formal degree, up to a rational factor:

dpσq “
〈1, σ〉

|π0pZĽ1pϕqq|
¨ |γp0, σ,Ad, ψq|,

where L1 is the quotient of L by the split component of its center.
Hence, up to the local Langlands conjectures and this rational constant, we can define a canonical mea-

sure µLH on the set of (tempered) Langlands parameters. (For unramified packets or for classical groups
there is no ambiguity about this rational constant.)

Example 1.5.2. (unramified Plancherel measure, split case:)

9
ź

αPΦ

1´ eα̌

1´ q´1eα̌
pχqdχ.

1Shahidi has proven it for generic representations, and has reduced it for general tempered representations to two standard
conjectures on tempered L-packets: stability and genericity.
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1.6 Plancherel theorem for strongly tempered varieties

Let X be strongly tempered

Proposition 1.6.1. The space L2pXq admits a Plancherel decomposition:

〈Φ1,Φ2〉L2pXq “

ż

Ĝ
〈Φ1,Φ2〉π µGpπq, (1.3)

where µG is the canonical Plancherel measure on G. Here 〈Φ1,Φ2〉π denotes the adjoint of the map:

π b π̄ Ñ C8pXq b C8pXq

given by:

v1 b v̄2 ÞÑ

ż

H
〈πphx1qv1, πpx2qv2〉 dh,

composed with the unitary pairing on π, i.e.:

〈 , 〉π : C8c pXq b C
8
c pXq Ñ π b π̄ Ñ C.

(All statements up to suitable choices of measures on the spaces.)

Proof. Let π be a unitary representation (endowed with a invariant Hilbert norm, hence with a fixed isomor-
phism: π̃ » π̄) and let iπ : C8c pGq Ñ π̄ b π denote the dual of matrix coefficient. (If we identify π̄ b π with
a subspace of Endpπq, the morphism iπ simply maps f P C8c pGq to πpfq.)

The Plancherel formula on G can be written as:

〈f1, f2〉L2pGq “

ż

〈iπpf1q, iπpf2q〉HS µGpπq

where 〈 , 〉HS denotes the Hilbert-Schmidt hermitian form on π̄ b π Ă Endpπq.
Let Φipxq “

ş

H fiphxqdh P C
8
c pXq, fi P C

8
c pXq (i “ 1, 2). Then:

〈Φ1,Φ2〉L2pXq “

ż

G

ż

H
f1phgqf̄2pgqdhdg “

ż

H
〈Lh´1pf1q, f2〉L2pGq dh

where L‚ denotes the left regular representation of G. Keeping in mind that iπpLh´1f q “ πph´1qiπpfq we
get:

〈Φ1,Φ2〉L2pXq “

ż

H

ż

π
〈πphqiπpf1q, iπpf2q〉HS µpπqdh “

“

ż

π

ż

H
〈πphqiπpf1q, iπpf2q〉HS µpπqdh “

“

ż

π
〈Φ1,Φ2〉π µpπq.

Notice that at all stages these integrals are absolutely convergent, justifying our application of Fubini.

The argument applies also to the Fourier-Jacobi case. For now, we restrict toGpV qˆGpV q, whereGpV q “
unitary or symplectic group, pω,Hωq “its” Weil representation (really, need double covers in the symplectic
case). We let H be the diagonal copy and consider the unitarily induced representation L2pX,ωq “ IGHpωq.
We have the analogous proposition, in terms of the local periods considered by Hang Xue:

7



Proposition 1.6.2. The space IGP pωq admits a Plancherel decomposition:

〈Φ1,Φ2〉 “
ż

Ĝ
〈Φ1,Φ2〉π µGpπq, (1.4)

where µG is the canonical Plancherel measure on G. Here 〈Φ1,Φ2〉π denotes the adjoint of the map:

π b π̄ Ñ C8pX,ωq b C8pX,ωq

given by:

v1 b v̄2 b f1 b f̄2 ÞÑ

ż

H
〈πphx1qv1, πpx2qv2〉 〈ωphqf1, f2〉 dh,

(f1, f2 P Hω), composed with the unitary pairing on π, i.e.:

〈 , 〉π : C8c pX,ωq b C
8
c pX,ωq Ñ π b π̄ Ñ C.

The proof is the same.

1.7 Nonvanishing and positivity

Theorem 1.7.1. For any tempered representation π, the hermitian form:

φ1 b φ̄2 ÞÑ

ż

H

〈
πphqφ1, φ̄2

〉
dh

is positive semi-definite.
For a “standard” tempered representation (i.e. unitary induction from discrete series, which is not necessarily

irreducible)2 the form is nonzero iff HomHpπ,Cq ‰ 0.

Proof. Positivity: True for almost every π by positivity of the L2-inner product. Follows for every by conti-
nuity.

Discrete series: Nonvanishing is easier to prove for a discrete series. The theory of asymptotics implies that
for a discrete series π, any morphism π ãÑ C8pXq has image in L2 (mod center). Thus, it has to
contribute nontrivially to the Plancherel formula.

Continuous spectrum: Again by the theory of asymptotics, any π ãÑ C8pXq has tempered image, and this
allows one to show that it is in the weak closure of L2pXq. Hence, π belongs to a unitarily induced
discrete series IGP pσq, and the Plancherel measure of the family ω ÞÑ IGP pσ b ωq is nonzero on any
neighborhood of the trivial character of P .

The idea behind the following argument is this: As we have seen, only the product of a Plancherel
measure with a relative character is well-defined. Given a relative character, the Plancherel measure
depends on its asymptotic behavior. Now, fixing the Plancherel measure for the group allows us to
compare our relative characters with characters/matrix coefficients on the group, which of course are
nonzero.

2A tweak of this argument can actually show, under the assumption of multiplicity one for a tempered representation in general
position, that there is multiplicity one for every “standard” tempered representation – hence the theorem holds for any irreducible
tempered. (Thanks to R. Beuzart-Plessis for pointing this out.)
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To formulate a brief argument in this direction, let us restrict ourselves to the multiplicity-free case,
and view the Plancherel formula (with fixed, G-Plancherel measure) as an association of morphisms:

Ĝ Q π Ą π8
lπ
ÝÑ C8pXq

(defined almost everywhere, up to a scalar of absolute value 1), with the property that for every smooth
section:

v : π ÞÑ vπ P π
8

the function:
Φv :“

ż

lπpvπqµpπq (1.5)

has norm:
}Φv}

2 “

ż

}vπ}
2
πµpπq. (1.6)

(Of course, this formula holds more generally by the definition of direct integral of Hilbert spaces, but
we chose our sections to be smooth in order for the integral (1.5) to make sense pointwise, as well.)

One should view (1.6) as a lower bound for the norm of Φv: it says that the norm is bounded below by
our choice of section and the Plancherel measure. We seek an upper bound of the form:

ż

}lπ}
2 ¨ }vπ}

2
πµpπq,

where }lπ} is a suitably defined “norm” on lπ. In other words, we wish to show that the actual function
(1.5) will be much smaller than predicted if the lπ ’s were allowed to be zero.

Consider the map x : G Q g ÞÑ Hg P HzG “ X which allows us to think of functions on X as left-H-
invariant functions on G. Smoothening on the left by some compact open subgroup K 1, lπ becomes a
morphism:

K 1 ‹L lπ : π Ñ C8pGq,

where G acts on the right hand side by right multiplication. This is nothing else than the application
of the matrix coefficient map:

π̃ b π Q K 1 ‹ l1π b ‚ Ñ C8pGq,

where l1π is the H-invariant functional on π corresponding by Frobenius reciprocity to lπ.

Fact: If our section π ÞÑ vπ is K-invariant, for some K, we can choose K 1 so that on an open subset
G` which surjects to X we have: 〈

K 1 ‹ l1π, πpgqvπ
〉
“ lπpvπqpxpgqq.

Thus, if we set fvpgq “
ş

〈K 1 ‹ l1π, πpgqvπ〉 dπ, we have:

fvpgq “ Φvpxpgqq

for g P G`. There is also a comparison of volumes between G` and X, which allows us to make an
estimate:

}Φv}
2 ! }fv}

2,

with the implicit constant being independent of v. The right hand side is, in terms of the Plancherel
formula for G, equal to:

ż

}K 1 ‹ l1π}
2 ¨ }vπ}

2
πµpπq,

which is the estimate that we needed.
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2 Periods and distinction for spherical varieties

Abstract

The conjectures of Gan-Gross-Prasad fit into the general framework of spherical varieties, and Jacquet’s
concept of ”distinction”. I will explain this framework, including, if time permits, methods more general
than ”periods” such as the Rankin-Selberg method and a speculative attempt for a vast generalization,
including Ng’s recent foray into reductive monoids. Remark: there was not enough time to cover this
material, and the last part has been moved to the next lecture.

2.1 Where do Euler products come from?

In the first lecture we discussed the local factors of Ichino-Ikeda (and their generalizations) for the Gan-
Gross-Prasad conjecture. The second lecture will describe a general setting from which Euler products
arise, and will be highly speculative. In the third lecture, we will discuss the relation of local factors with
L-functions.

Multiplicity-one condition. Not quite necessary, answer should come from: RTF.
Clarify that there is a restricted class of examples that are better understood, and a wider class that has

not been understood yet:

• situations involving induction from a character of a reductive subgroup;

• more general situations, involving induction of specific, typically “small” representations.

Example 2.1.1. Let U be the unitary group of a skew-hermitian form. The diagonal U ãÑ U ˆ U ˆ U is
not spherical (except in dimension 2), so we shouldn’t expect Euler factorization of the period on three
automorphic representations π1 b π2 b π3.

However, if we take π3 to be the Weil representation ω, this is part of the GGP conjectures, and every
generic (Vogan) L-packet of U ˆ U contains a distinguished element. Thus, to the space IndUˆUU we should
associate the L-group of U ˆ U .

Finally, if instead of the Weil representation we induce the trivial character, then we are in the group case
and only represetations of the form τ b τ̃ should be distinguished. (The L-group of this space is the L-group
of U under the twisted-diagonal embedding into the L-group of G – twisted by the Chevalley involution that
takes the Langlands parameter of a represenation to that of its dual.)

2.2 General setting

Let X‚ “ HzG be a homogeneous spherical variety. For homogeneous varieties, “spherical” means that
the Borel subgroup of G (over the algebraic closure) acts with a Zariski dense (open) orbit. This includes
symmetric spaces, the Gross-Prasad cases, flag varieties etc. We will implicitly make some extra (unstated)
assumptions on X: multiplicity-one is enough, but one can relax this.

We denote by SpX‚q the usual Schwartz space of rapidly decaying functions on X‚, either locally or
globally:

SpX‚pAkqq “
1

â

v

SpX‚v q,

where the restricted tensor product is taken with respect to the characteristic function of Xpovq.
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Any morphism: π H
ÝÑ C gives, by dualization, a morphism:

SpX‚q Ñ π̃,

or equivalently a pairing SpX‚q b π Ñ C.
Explication: If the morphism is given by the automorphic period integral over rHs, then we get a pairing:

PX‚ : SpX‚pAkqq b π Q Φb φ ÞÑ

ż

rGs
ΣΦ ¨ φ P C,

where ΣΦpgq :“
ř

γPX‚pkqΦpγgq P C8prGsq.
Notice that, at least when X‚ is quasiaffine, the sum converges because X‚pkq is discrete and Φ is of

rapid decay.

Remark 3. The relative trace formula for a pair X‚1 ˆ X‚2{G is “defined” (up to analytic difficulties) as the
Gdiag-invariant functional:

Φ1 b Φ2 ÞÑ

ż

rGs
ΣΦ1 ¨ ΣΦ2

on SpX1pAkqqbSpX2pAkqq. Its spectral decomposition is an integral over automorphic representations π of the
above morphisms composed with inner product on π b π̃:

SpX1pAkqq

��

SpX2pAkqq

��
π̃ b

��

π

C

Ideological thesis: One should choose an affine1 embedding X on X‚, replace SpX‚q by a suitable
Schwartz space SpXq, and repeat the above construction with these new data, obtaining a pairing:

PX : SpXpAkqq b π Ñ C. (2.1)

Remark 4. The operator Φ ÞÑ ΣΦ is still defined by summation over X‚pkq, not Xpkq, because as we will see,
in the presence of singularities the elements of SpXq may not extend as functions to the whole space X.

Example 2.2.1. Both X‚ “ GLn and X “ Matn are OK (as G “ GLn ˆ GLn-spaces) because they are
both affine. However, the usual Schwartz spaces SpX‚pAkqq and SpXpAkqq give different answers: The
former is dual to GLdiag

n -period integrals (calculating the inner product of two vectors in the automorphic
representation, which is Eulerian but at almost every place equal to 1), while PX applied to Φ P SpXpAkqq
and two automorphic forms φ1 P π, φ2 P π̃ is equal to the Godement-Jacquet integral:

ż

GLnpAkq
Φpgq 〈πpgqφ1, φ2〉 dg,

which is Eulerian and equal to a value of the standard L-function of π at almost every place.
Notice also that the continuous parameter of the Godement-Jacquet integral is hidden in the choice of

π, which we can vary by |det |s. The integral is absolutely convergent only under a condition on the central
character of π, which we can write as <pπq " 0. (This notion of <pπq can be made rigorous in terms of X.)
This will also be the case, in general, for most of the integrals that we will consider.

1Throughout: normal. (This is a requirement for X to be called “spherical”.)
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2.3 Euler factorization

The Euler factorization of PX , or rather of the corresponding relative character on SpXpAkqq b SpXpAkqq
which we will denote |PX |2 (s. the first lecture) only depends on X‚, and hence can be described without
reference to the specific embedding X.

Recall that in the Gan-Gross-Prasad cases we had the conjecture, at least for tempered representations:

|PX |2 “?
ź

v

Jπv ,

where ? was a small rational factor, the Euler product was understood using partial L-values and Jπv was
characterized in terms of its appearance in the Plancherel formula for L2pX‚v q with Plancherel measure µLG.
(We think here of the G-Plancherel measure as a measure on Langlands parameters, by the comment on
its conjectural independence from the choice of element in the L-packet – up to a small rational factor at a
finite number of places.)

In general, we cannot expect L2pX‚q to be absolutely continuous with respect to G-Plancherel measure.
(Example: the group case X “ H,G “ H ˆH.) Before we formulate a global conjecure on Euler factoriza-
tion, we need some “relative local Langlands conjecture” on the Plancherel measure for L2pXq (over a local
field F ):

Conjecture 1 (S.- Venkatesh). There is a direct integral decomposition:

L2pXq “

ż

HφµLGX pφq,

where µLGX is the Plancherel measure on the set of Langlands parameters into the L-group of X, and Hφ is a
finite direct sum of representations in the Arthur packet with parameter:

W 1
F ˆ SL2

φˆId
ÝÝÝÑ LGX ˆ SL2

(2.2)
ÝÝÝÑ LG.

The L-group of X has for now been defined in generality only in the split case, together with the canon-
ical map used above:

LGX ˆ SL2 Ñ
LG. (2.2)

It is closely related to the one defined by Gaitsgory and Nadler using Tannakian formalism.
Example 2.3.1. For X “ GzG the L-group is trivial (equipped with the obvious, trivial map to LG, but the
map on SL2 is principal into the connected dual group Ǧ, so we get the Arthur parameter of the trivial
representation.

For X “ Sp2n zGL2n we get for connected components: ǦX “ GLn, ǦX ˆ SL2 Ñ Ǧ the tensor product
representation of GLn and SL2 to GL2n.

Fixing now the canonical Plancherel measure µLGX we get relative characters Jπv on SpXvq b SpXvq,
and we can state the global conjecture, assuming the notion of global Arthur parameter Lk ˆ SL2 Ñ

LG:

Conjecture 2 (S.-Venkatesh). Assume that π is an automorphic representation which admits global Arthur
parameter factoring as:

Lk ˆ SL2
φˆId
ÝÝÝÑ LǦX ˆ SL2 Ñ

LG,

then |PX |2 factorizes as:
? ¨

ź

v

Jπv ,

with the same conventions as above on ? and the Euler product.

This conjecture should be taken with a grain of salt, as its proper formulation seems to involve the
relative trace formula and one may need to formulate it in terms of Vogan-Arthur packets, not individual
representations in them.
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3 In search of the L-function

Abstract

There is very little understanding about the (special value of an) L-function associated to each pe-
riod. In anticipation of a nicer answer, I will present a combinatorial recipe that relates the L-function to
geometric invariants of the relevant spherical variety.

3.1 Problems

We stated the “ideological thesis” that X (our spherical variety) should be affine, and we will not discuss the
local problems of defining the appropriate Schwartz space SpXvq and performing the unramified calculation
on its “basic vector”. But first, let us see an example where X‚ not affine doesn’t work:

Example 3.1.1. Let X‚ be the quotient of pSL2q
3 by the subgroup H3, where:

Hn “

"ˆ

1 x1

1

˙

ˆ

ˆ

1 x2

1

˙

ˆ ¨ ¨ ¨ ˆ

ˆ

1 xn
1

˙

ˆ a

ˇ

ˇ

ˇ

ˇ

x1 ` x2 ` ¨ ¨ ¨ ` xn “ 0

*

.

Let G “ pGm ˆ pSL2q
3q{t˘1u, where Gm acts by left multiplication by the diagonal of

ˆ

a
a´1

˙

, and

let H Ă G be the stabilizer of a point on X.
One can show that theH-period integrals converge for<π " 0 (this refers to the character of Gm) and are

Eulerian. However, when one computes the local unramified factors (i.e. when one computes PX‚ applied
to the basic vector 1X‚povq then one doesn’t get an expression which should have analytic continuation (as
the automorphic character of Gm varies in a complex family).

On the other hand, if we takeX “ X‚
aff , there is an exceptional isomorphism of this space with the affine

closure of rS, SszSp6, and as we will discuss below the Schwartz space is known in this case (equipped with
a basic vector Φ0

v at almost every place). The local factors of the Euler product for |PX |2 are equal to:

Lpπ0,ˆ,
1
2 ` sqLpπ̃,ˆ,

1
2 ´ sq

Lpπ0,Ad, 1q
,

where ˆ denotes the obvious tensor product representation of the dual group, and π is assumed to be a twist
of a unitary representation π0 by |χ|s, where χ is a suitable generator of the character group of G.

This is Garrett’s triple-product construction. Similarly, the cases n “ 1 and n “ 2 give Hecke periods and
Rankin-Selberg integrals (giving to the cases n “ 1, resp. n “ 2, of the corresponding L-function).

3.2 Cases where the Schwartz space is known

Very few:

1. When X is smooth affine, in which case we use the usual Schwartz space of rapidly decaying smooth
functions. In this case, X is necessarily a vector bundle over a homogeneous affine variety (s. classifi-
ation by Knop and Van Steirteghem).

For example, when X‚ “ PnzGLn, where Pn is the mirabolic subgroup (and P̃n the corr. parabolic)
then X “ X‚

aff is an n-dimensional vector space. If Φ P SpXpAkqq and we integrate ΣΦ against an
idele class character χ of the center, we get an Eisenstein series EpΦ, χq. Compared to a “Langlands
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Eisenstein series” Epfχq, where χ ÞÑ fχ P I
G
P̃n
pχq is a “constant” section (constant on a fixed maximal

compact subgroup),EpΦ, χq differs by a partial Dirichlet L-factor times a factor that depends on choices
at a finite number of places.

For example, in the case n “ 2 this corresponds to the difference between classical Eisenstein series
defined by sums over the integers of the form:

ÿ

pm,nq‰p0,0q

ys

|mz ` n|2s
vs.

ÿ

pm,nq“1

ys

|mz ` n|2s
.

The left hand side is the right hand side times ζp2sq.

2. Generalizing the last example, Braverman and Kazhdan have defined the full Schwartz spaces for
varieties of the form X “ rP, P szG

aff
, where G is split and P is a parabolic.

3. In the rest of the cases I am familiar with, only the basic vector Φ0
v is known, obtained by a construction

that we will discuss. Notably, Braverman, Finkelberg, Gaitsgory and Mirkovic have considered the
varieties:

X “ UP zG
aff

as M ˆ G-spherical varieties, where P “ MUP is a parabolic and G is split with simply connected
derived group. The basic vector can be formulated in terms of its relation to 1Xpovq, namely there is
an element in the unramified Hecke algebra of M which acting on the left (normalized-unitary action)
on Φ0

v gives 1Xpovq. The Satake transform of this element is the polynomial function sending a Satake
parameter c P M̌ :

detp1´ q´1c|ǔP q.

Thus, the Eisenstein series obtained from those functions after integrating against a representation τ
of M will differ from Langlands’ by partial L-functions of the form:

Lpτ, ǔP , 1q.

4. The basic function is known now for affine toric varieties, as I will describe below.

5. It is known for simple reductive monoids (also below).

3.3 Construction of the basic function

If q denotes the residual characteristic at a nonarchimedean place v, the idea is to use a scheme X over
Fq such that XpFqq “ Xpovq, and obtain the basic function Φ0 by applying the function-sheaf dictionary
(alternating trace of Frobenius on the stalks over Fq-points) to the intersection cohomology sheaf ICX.

There are difficulties, however, implementing this, as the scheme X will be infinite-dimensional and there
is no appropriate theory of intersection cohomology yet in this setting.

Instead, one considers a global model, but for this we will need to pass to equal characteristic. Thus, we
use a Cartan decomposition of the form:

pXpovq XXpkvqq{Gpovq Ø Λ`X

(some monoid), which holds over both Fv and Fqpptqq to transfer functions in a rather ad hoc way from one
to the other. Hence, from now we will assume that ov “ Fqrrtss, and that X is defined over Fq.
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Then points of Xpovq can be thought of as maps from the formal disk specfpFqrrtssq to X, and we will
replace the formal disk by a smooth projective curve C over Fq. We define:

Z :“ MapspC Ñ X{Gq,

the moduli stack parametrizing isomorphism classes of pairs pPG, σq, where PG is a principal G-bundle over
C and σ is a section: C Ñ X ˆG PG. We also require that σ maps generically to the open orbit X‚ ˆG PG.

For such a σ and any closed point c P |C| we have a well-defined valuation:

valcpσq P pXpovq XXpkvqq{Gpovq “ Λ`X

as follows: if we trivialize the bundle in a formal neighborhood of c, and identify this with the formal disk
D, we get an element of pXpovq XXpkvqq; modding out by the trivialization, we get a well defined element
of Λ`X .

Now, we can consider the intersection cohomology complex ICZ (properly normalized) of Z and obtain
a function ΦZ on ZpFqq (i.e. isomorphism classes of data as above defined over Fq) by taking the alternating
trace of Frobenius. The hope is that this function is factorizable, i.e. there is a function Φ0 on Λ`X (equal to
1 on the identity element) such that:

ΦZpPG, σq “
ź

cP|C|

Φ0pvalcpσqq.

We then take this function Φ0 to be the basic function of our Schwartz spaces.

Example 3.3.1. If X “ G “ Gm then we are classifying Gm-bundles together with a section. Such pairs of
data are unique up to isomorphism (the section defines a canonical trivialization of the bundle), and hence
the moduli space Z is a point. The resulting function is the characteristic function of oˆv .

On the other hand, if G “ Gm and X “ A1, then we are classifying line bundles with a section. Such
a pair is completely determined by the zero divisor of the section, and hence our moduli space is the space
DivpCq of effective divisors on C. We have:

DivpCq “ \mě0Cm,

where Cm denotes the m-th symmetric power of the curve (the GIT quotient Cm � Sm). The resulting
function is the characteristic function of ov.

In the general case, Z will not be a scheme but an Artin stack of locally finite type. However, if X
is smooth then so is Z, and the resulting function will be the characteristic function of Xpovq. If X has
singularities, the function may blow up there.

3.4 Affine toric varieties

An affine toric variety is determined by a group ΛX of cocharacters and a strictly convex, finitely generated
cone Λ`X inside of it.

In this case, a calculation that we performed with Ngô B.C. showed that the basic function is:

Φ0 “
ź

i

1

1´ eλ̌i
,

where the λ̌i’s are the primitive (indecomposable) elements in Λ`X .
The moduli space is again a scheme, which locally looks roughly like intersections of the symmetric

powers Cm that we saw above.
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3.5 Simple reductive monoids

In the group case X‚ “ H, if we let ΛH denote the coweights of the universal Cartan of H then an affine
embedding of H (automatically a monoid) is determined by a strictly convex cone spanned by the positive
root cone R and a finite number of nonzero antidominant elements. In particular, semisimple groups have
no nontrivial affine embeddings.

For the simple monoids considered by Ngô, the character group of H is generated by an element det,
and the cone is spanned by an element ρ̌ P ΛH with 〈ρ̌,det〉 “ 1 (in additive notation). Let us denote the
corresponding monoid by X “ Hρ̌.

In this setting he conjectured, and recently proved, that the basic function is well defined and the element
of the Hecke with the following Satake transform takes it to 1Hpovq:

detp1´ ‚|Vρ̌q,

where Vρ̌ is the representation of the dual group with lowest weight ρ̌. Thus, the Godement-Jacquet con-
struction for this case gives the L-function Lpπ0, Vρ̌, sq (as we vary an automorphic representation π0 by
powers of | det |).

Of course, that reminds us of the basic and most difficult problem that we will face:

The global pairing PX converges only for <pπq " 0, and we have no idea how to analytically continue it!

3.6 Unramified calculation for periods

In general, by unramified calculation we mean the computation of the basic function and that of the local pe-
riods Jπv of the Plancherel formula (s. Conjectures 1, 2) applied to it. Notice that the unramified Plancherel
formula (the Plancherel formula for L2pXvq

Gpovq) is known, so we do not have to wait for a resolution of the
full relative local Langlands conjecture in order to compute the Jπvs. Set F “ kv.

First, let us discuss the affine homogeneous case X “ X‚ – then the basic function is 1Xpovq. What are
the local factors for |PX |2? The answer, known in the split case at least (we will assume now that G is split),
will depend on combinatorial data for X. First piece of data is the torus ǍX of “X-admissible” unramified
characters, the maximal torus of the connnected dual group ǦX of X. Its cocharacter group is the group
generated by highest weights of the Borel subgroup on the coordinate ring F rXs, and its character group
will be denoted by ΛX .

These highest weights appearing on F rXs, now, define a “cone” (saturated monoid in the group they
generate), and the dual coneRX is spanned by a set of extremal rays, which has a canonical set of generators
tv̌DuD Ă ΛX . (This choice of generators is dictated by the valuations induced by colors – irreducibleB-stable
divisors on X‚; sometimes, they have to be counted with multiplicity.) The cone RX is some analog of the
positive root cone in the group case, and in the affine homogeneous case, the 〈WX , t˘1u〉-closure Θ of this
set has remarkable properties (not completely proven, but easy to check in each case), similar to properties
of root systems. (Here WX is the Weyl group of ǦX , which we will not explain.) That allows one to define
a virtual L-value for ǦX by the formula:

ś

γ̌PΦ̌`X
p1´ q´1eγ̌q

ś

θ̌PΘ`p1´ σθ̌q
´rθ̌eθ̌q

.

The constants rθ̌ are defined when θ̌ “ v̌D as:〈
v̌D, ρP pXq

〉
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and extended to all Θ by 〈WX , t˘1u〉-invariance. The parabolic P pXq is the stabilizer of the open Borel
orbit, and is related to the “Arthur SL2” that we saw above. (It corresponds to a standard Levi Ľ Ă Ǧ, and
SL2 maps principally into that Levi.) Finally, the sign σθ̌ P t˘1u will not be defined here.

Up to local abelian zeta factors which do not depend on the representation, these are the local factors of
|PX |2.

Example 3.6.1. For PGLdiag
2 zpPGL2q

3 the dual group is pSL2q
3 and there are three colors inducing valuations:

v̌1 “
´α̌1 ` α̌2 ` α̌3

2
,

v̌2 “
α̌1 ´ α̌2 ` α̌3

2
,

v̌3 “
α̌1 ` α̌2 ´ α̌3

2
.

We have P pXq “ B so
〈
v̌i, ρP pXq

〉
“ 1

2 for all i, and the 〈WX , t˘1u〉-closure of this set is the set of all
coweights of the form ˘α̌1˘α̌2˘α̌3

2 .
These are all the nontrivial weights of the product representation of the dual group, and up to zeta

factors the above formula gives a quotient of local L-values:

Lpπ1 ˆ π2 ˆ π3,
1
2q

Lpπ,Ad, 1q
,

the local factor of the triple period of Harris and Kudla (low rank of orthogonal Gross-Prasad).
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