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F : p-adic field.

The local Gan-Gross-Prasad conjecture (for Bessel models) deals with some triples (the
GGP triples) (G,H, ξ) where

– G is a connected reductive group /F ;
– H < G is an algebraic subgroup ;
– ξ : H(F )→ C× is a continuous character.

Roughly, the conjecture predicts the behavior of

m(π) = dim HomH(π, ξ) for π ∈ Irr(G) = smooth dual of G(F )

in terms of the Langlands parametrization of Irr(G). More precisely, the Gan-Gross-Prasad
triples come from pairs W ⊂ V of either quadratic spaces or hermitian spaces (in which case
there is a quadratic extension E/F fixed). We will denote uniformly by h the underlying
quadratic or hermitian form on these spaces. To get a GGP triple, you need the following
two conditions to be satisfied :

– W⊥ is odd-dimensional ;
– The orthogonal/unitary group of W⊥ is quasiplit.

Actually, for hermitian spaces the second condition is automatic (since we are dealing with
p-adic groups, any unitary group of odd rank is quasiplit). Anyway, in all cases, the two
conditions taken together are equivalent to the existence of a basis

zr, zr−1, . . . , z1, z0, z−1, . . . , z−r

of W⊥ such that

h(zi, zj) 6= 0⇔ i = −j

Fix such a basis and consider the following parabolic subgroup of G(V ) = SO(V ) or U(V ) :
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P = StabG(V ) (< zr >⊆< zr, zr−1 >⊆ . . . ⊆< zr, . . . , z1 >)

Remark that G(W )(= SO(W ) or U(W )) is a subgroup of P . Denote by N = Radu(P ) the
unipotent radical of P . The subgroups N and P have more concrete descriptions in terms
of matrices : considering a basis of the form zr, . . . , z1,W⊕ < z0 >, z−1, . . . , z−r, P is the
subgroup of upper triangular by block matrices of a certain form and N the subgroup of
unipotent upper triangular by block matrices of the same form. Exercise : draw the shape
of these (unipotent) upper triangular by block matrices.

Fix a nontrivial additive character ψ : E → C× (with E = F in the orthogonal case) and set

ξ(n) = ψ

(
r−1∑
i=0

h(nzi, z−i−1)

)
for all n ∈ N(F ). This defines a character ξ : N(F ) → C× which is invariant by G(W )(F )-
conjugation and so may be extended to a character

ξ : N(F )G(W )(F ) = N(F ) oG(W )(F )→ C×

by setting ξ(ngW ) = ξ(n). Now, take

G = G(V )×G(W )

H = N oG(W )

and define an embedding H ↪→ G by ngW 7→ (ngW , gW ). We got a triple (G,H, ξ) and all
triples obtained this way will be called GGP triples. The GGP conjectures are relative to
these triples.

As before, we define a multiplicity

m(π) := dim HomH(π, ξ)

for π ∈ Irr(G). This multiplicity is easily seen to depends only on the pair of quadra-
tic/hermitian spaces (V,W ) and on π (so it doesn’t depend on the particular inclusion
W ⊂ V , the choice of a basis zr, . . . , z−r and the character ψ). Let me give two particular
examples of the situation :

– If W = 0, then G = G(V ), N is a maximal unipotent subgroup of G and ξ is a generic
character of N(F ). This is called the Whittaker case because then m(π) is just the
dimension of the space of Whittaker functionals for π (wrt (N, ξ)) ;

– If dim(W ) = dim(V ) − 1, then N = 1 and ξ = 1 and the embedding of H = G(W )
into G = G(V )×G(W ) is the diagonal one. If π = πV ⊗ πW then we have

HomH(π, 1) = HomG(W )(πV , π
∨
W )
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Hence we are studying the branching-law problem of knowing which irreducible repre-
sentations of G(W )(F ) appear as quotient of πV |G(W ). This will be called the codimen-
sion one case.

Back to the general case, here is a basic foundational result of the subject

Theorem 1 (Aizenbud-Gourevitch-Rallis-Schiffmann, Waldspurger) We always have

m(π) 6 1

Remark that in the Whittaker case this is equivalent to the unicity of the Whittaker model.

As I said, roughly the GGP conjectures predicts for which π we get the multiplicity to
be one. These conjecture are build on the Local Langlands Correspondence (LLC) seen as a
way to parametrize Irr(G).

LLC (rough version) : There should exist a decomposition

Irr(G) =
⊔
ϕ

ΠG(ϕ)

into finite sets called L-packets. The decomposition begin indexed by some set of morphisms
ϕ : WDF → LG called Langlands parameters. Moreover, to each Langlands parameter is
associated a finite 2-abelian group Aϕ and it is conjectured that there should exist bijections

ΠG(ϕ) ' ÂGϕ ⊆ Âϕ

π(ϕ, χ)←[ χ

where Âϕ is the group of characters on Aϕ and ÂGϕ is a certain subset of it. Of course, this
parametrization of Irr(G) have to satisfy some expected properties.

I will come back to this and state precisely what we need from LLC later. Now assuming
LLC, we can state the local GGP conjecture informally as follows

GGP conjecture (rough version) : For all generic Langlands parameter ϕ, there exists
at most one π ∈ ΠG(ϕ) such that m(π) = 1 and moreover, if such a π exists, we can describe
the corresponding character χ in terms of certain ε factors.

We will also be more precise about the conjecture later in the course.

What has been done :
– In a serie of four papers, Waldspurger proved the conjecture for tempered L-packets

in the orthogonal case ;
– In an additional paper, Moeglin and Waldspurger reduced the generic case to the

tempered one (so that the orthogonal case is completely done) ;
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– In my thesis, I adaptated the method of Waldspurger to deal with tempered represen-
tations in the unitary case

Since the proofs are very similar in both cases, I will from now on focus on the unitary
case. I will also restrict myself to tempered representations. So let (G,H, ξ) be an unitary
GGP triple and denote by

Temp(G) ⊂ Irr(G)

the tempered dual of G(F ). The proof of the conjecture roughly goes like that
– We prove integral formulas for the multiplicity m(π), π ∈ Temp(G), as well as for

certain ε factors ;
– Using LLC and its endoscopic characterization, we are able to relate the two previous

formulas and so find an expression of the multiplicitym(π) in terms of certain ε factors.
This relation happens miraculously to be exactly the one predicted by GGP !

1 A formula for m(π)

1.1 The Theorem

The formula I want to discuss express m(π), for π ∈ Temp(G), in term of the Harish-
Chandra character θπ of π. So I will start by recalling some facts about this character
(beginning with its definition).

Let π ∈ Irr(G). For f ∈ C∞c (G(F )), we may define the operator

π(f) =

∫
G(F )

f(g)π(g)dg

This operator is of finite rank (since π is automatically admissible) and this allows us to
define a distribution θπ on G(F ) by setting

θπ(f) = trace π(f), ∀f ∈ C∞c (G(F ))

It is a deep theorem of Harish-Chandra that θπ is in fact represented by a locally integrable
function θπ ∈ L1

loc(G(F )) :

θπ(f) =

∫
G(F )

f(g)θπ(g)dg

It is this function that is called the Harish-Chandra character of π. The character is always
locally constant (smooth) on the regular locus Greg(F ). Harish-Chandra went further and
described rather explicitly the local behavior of θπ near every semisimple point x ∈ Gss(F ).
This can be stated as follow

Theorem 2 For all x ∈ Gss(F ), we have a local expansion
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θπ(xeX) =
∑

O∈Nil(gx)

cπ,O(x)ĵ(O, X)

for almost all X ∈ ω. Where :
– Gx = ZG(x) and gx = Lie(Gx) ;
– ω ⊂ gx(F ) is an open neighborhood of 0 ;
– Nil(gx) denotes the set of all Gx(F )-nilpotent orbits in gx(F ) ;
– For O ∈ Nil(gx), ĵ(O, .) is the Fourier transform of the orbital over O (see below for
more explanations) ;

– cπ,O(x) are just complex numbers.

Let me explain a little bit further what is the function ĵ(O, .). First, fix a Gx(F )-invariant
symmetric and nondegenerate bicharacter < ., . >: gx(F ) × gx(F ) → C×. This allows us to
define a Fourier transform

C∞c (gx(F ))→ C∞c (gx(F ))

f 7→ f̂(X) =

∫
gx(F )

f(Y ) < X, Y > dY

where dY is the autodual Haar measure, that is the only one such that ˆ̂
f(X) = f(−X).

For O ∈ Nil(gx), we may form the integral orbital over O (a distribution) :

f ∈ C∞c (gx(F )) 7→ JO(f) =

∫
O
f(N)dN

Now, as an analog for the Lie algebra of the result about characters on the group, Harish-
Chandra has proved that the distribution

f 7→ JO(f̂)

is represented by a locally integrable function X 7→ ĵ(O, X) which is locally constant on the
regular locus gx.reg(F ).

For π ∈ Irr(G), define a function

cπ : Gss(F )→ C

cπ(x) =
1

| Nil(gx)reg |
∑

O∈Nil(gx

cπ,O(x)

where Nil(gx)reg ⊂ Nil(gx) is the subset of regular nilpotent orbits. There are no regular
nilpotent orbit if gx is not quasisplit and so in this case we have cπ(x) = 0. Note that for
x ∈ Greg(F ), we have

cπ(x) = θπ(x)
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For π ∈ Temp(G), the formula will express m(π) by means of the function cπ. Before stating
the result, it remains to define a space (of conjugacy classes) over which we are going to
integrate cπ.

Let C(V,W ) be the following set of conjugacy classes in Hss(F ) = U(W )ss(F ) :

C(V,W ) =

( ⊔
W ′⊆W nondeg

U(W ′)(F )ell

)
/U(W )(F )

where the union is over the set of nondegenerate subspaces W ′ ⊂ W . Here U(W ′)(F )ell
denote the elliptic regular locus i.e. the subset of elements x ∈ U(W ′)reg(F ) such that
U(W ′)x(F ) is compact. Note that since U(W )(F )-conjugation in U(W ′)(F ) is the same
than U(W ′)(F )-conjugation, we may rewrite

C(V,W ) =
⊔

W ′ nondeg/U(W )(F )

U(W ′)(F )ell/conj

where this time the disjoint union is over the set of U(W )(F )-orbits of nondegenerate sub-
spaces W ′ ⊂ W . Fix on U(W ′)(F )ell/conj the measure defined by∫

U(W ′)(F )ell/conj

ϕ(x)dx =
∑

T∈Tell(U(W ′))

| W (T ) |−1

∫
T (F )

ϕ(x)dx

where Tell(U(W ′)) is a set of representatives for the conjugacy classes of maximal elliptic
tori in U(W ′), W (T ) is the Weyl group of T and the measure on T (F ) is the unique Haar
measure with total mass 1. Equip C(V,W ) with the disjoint union of these measures. Now
define

mgeom(π) := lim
s→0+

∫
C(V,W )

DH(x)cπ(x)∆(x)sdx

where DH is the absolute value of the usual Weyl discriminant :

DH(x) =| det(1− Ad(x))|h/hx |

and ∆ is defined by

∆(x) =| det(x− 1)|W/W (x) |

(W (x) = Ker(x− 1)).

Theorem 3 (i) This expression makes sense : the integral is absolutely convergent for
Re(s) > 0 and the limit as s→ 0 exists ;

(ii) If π ∈ Temp(G), we have an equality

m(π) = mgeom(π)
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This is the announced formula for the multiplicity. Before going into its proof, let me
give first an application to (a crude version of) the GGP conjecture.

1.2 First application to GGP

To state it I need of course a first version of LLC. In fact, the GGP conjecture is best
expressed in a form of LLC enhanced by Vogan where we consider a group together with all
its pure inner forms at the same time. The pure inner forms of a unitary group U(V ) are
the unitary groups U(V ′) where V ′ is an hermitian space of the same dimension than V .

Assume the group G we were working with is quasisplit and affect with an i in index
all the objects previously introduced : (Gi, Hi, ξi, Vi,Wi). I assume moreover, to simplify the
discussion, that Wi 6= 0. Then there exists (up to isomorphism) exactly one hermitian space
Wa with the following properties :

– dim(Wa) = dim(Wi) ;
– Wa 6' Wi.
Of course, there is also an unique hermitian space Va of the same dimension than Vi but

not isomorphic to it. Moreover, the hermitian space Wa may be embedded in Va :

Wa ←↩ Va
So that we get as before a GGP triple (Ga, Ha, ξa) well defined up to conjugation by Ga(F ).

The GGP conjecture is now easier to state by considering the two triples (Gi, Hi, ξi) and
(Ga, Ha, ξa) at the same time.

LLC (second version) : Gi and Ga share the same L-group LG. There should exist two
decompositions

Temp(Gi) =
⊔
ϕ

ΠGi(ϕ)

Temp(Ga) =
⊔
ϕ

ΠGa(ϕ)

Both indexed by the subset of the Langlands parameters ϕ : WDF → LG that are tempered.
Moreover these decompositions should satisfy the following properties :

(1) For all tempered Langlands parameter ϕ : WDF → LG, the L-packets ΠGi(ϕ) and
ΠGa(ϕ) are finite sets ;

(2) The characters

θGi
ϕ =

∑
π∈ΠGi (ϕ)

θπ

θGa
ϕ =

∑
π∈ΠGa (ϕ)

θπ
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are stable ;
(3) The transfer of θGi

ϕ to Ga(F ) is −θGa
ϕ ;

(4) For every Whittaker datum, ΠGi(ϕ) contains exactly one representation having a Whit-
taker model with respect to this Whittaker datum.

Before going further, let me discuss the meaning of the last three conditions.

Two elements of G\,reg(F ) (\ = i or a) are said to be stably conjugate if they are conjugate
in G\(F ). Now we say of a function on G\,reg(F ) that it is stable if this function is constant
on the stable conjugacy classes. This explain condition (2).

Denote byG\,reg(F )/stab the set of stable conjugacy classes inG\,reg(F ). To explicit condition
(3), we first need to define an injection

Ga,reg(F )/stab ↪→ Gi,reg(F )/stab

Fix an algebraic closure F/F and set E = E ⊗F F . Then the two E-hermitian spaces
Vi,E and Va,E are isomorphic. Fixing such an isomorphism, we get an isomophism of groups

U(Vi)F = U(Vi,E) ' U(Va,E) = U(Va)F

well defined up to conjugacy, I claim that this bijection sends U(Va)reg(F )/stab into U(Vi)reg(F )/stab.
Hence, we get an injection

U(Va)reg(F )/stab ↪→ U(Vi)reg(F )/stab

Fact (for later use) : When further restricted to U(Va)(F )ell/stab, this injection becomes
a bijection

U(Va)(F )ell/stab ' U(Vi)(F )ell/stab

Similarly, we have an injection

U(Wa)reg(F )/stab ↪→ U(Wi)reg(F )/stab

(which of course also gives a bijection between the elliptic stable conjugacy classes). Taking
the product of these two injections, we obtain an embedding

Ga,reg(F )/stab ↪→ Gi,reg(F )/stab

which is the one we were looking for. Now, we may restate condition (3) more concretely as
follows :

(3) For all xa ∈ Ga.reg(F )/stab with image xi ∈ Gi,reg(F )/stab, we have

θGi
ϕ (xi) = −θGa

ϕ (xa)
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Last but not least, let me explain condition (4). A Whittaker datum for Gi is a conjugacy
class of pairs (UB, ξB) where UB is the unipotent radical of some Borel subgroup B and
ξB : UB(F )→ C× is a generic character on it (generic means that the stabilizer has minimal
dimension). Whittaker data for Gi exist because Gi is quasisplit. We say that π ∈ Irr(Gi)
admits a Whittaker model with respect to a Whittaker datum (UB, ξB) if

HomUB
(π, ξB) 6= 0

(by the theory of Whittaker models, this space is always of dimension at most 1). Actually,
there is a bijection between the set of Whittaker data and the set of regular nilpotent orbits
in gi(F ). This bijection is given as follows. Fix a Gi(F )-invariant nondegenerate symmetric
bicharacter < ., . >: gi(F ) × gi(F ) → C× (the same that we used to define the coefficients
cπ,O(1)). Let O ∈ Nil(gi)reg and pick N ∈ O. You may complete N into an sl2 triple
(N,H,N) where N is also regular nilpotent. Since both N and N are regular nilpotent they
belong to unique Borel subalgebras b and b respectively. Let UB be the unipotent radical of
the Borel subgroup with Lie algebra b and define a character ξB of UB(F ) by

ξB(eN) =< N,N >

for all N ∈ uB. This is a generic character and the map O 7→ (UB, ξB) yields the desired bijec-
tion. Using this parametrization, Rodier gave the following formula for dim HomUB

(π, ξB).

Theorem 4 (Rodier) For all O ∈ Nilreg(gi) with corresponding Whittaker datum (UB, ξB),
we have

cπ,O(1) = dim HomUB
(π, ξB)

By this formula of Rodier, we see that condition (4) implies the following condition (4’) :

(4′)
∑

π∈ΠGi (ϕ)

cπ(1) = 1

We are now in position to prove and state a first version of GGP :

Theorem 5 (GGP (second version)) Let ϕ : WDF → LG be a tempered Langlands pa-
rameter and assume the existence of two finite sets ΠGi(ϕ) ⊂ Temp(Gi) and ΠGa(ϕ) ⊂
Temp(Ga) satisfying the conditions (1)-(4) above. Then there exists a unique π ∈ ΠGi(ϕ) t
ΠGa(ϕ) such that

m(π) = 1

Proof : Set Π\ =
∑

π∈Π
G\ (ϕ)

π (\ = i or a). Extend π 7→ m(π) by linearity to all virtual
representations. Then we want to prove that

m(Πi) +m(Πa) = 1
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Define the functions θ\ =
∑

π∈Π
G\ (ϕ)

θπ and c\ =
∑

π∈Π
G\ (ϕ)

cπ. Then the formula for the
multiplicity express m(Π\) in terms of the function c\. More precisely, we have

m(Π\) = lim
s→0+

∫
C(V\,W\)

DH\(x)c\(x)∆(x)sdx

Since Θ\ is stable (condition (2)), we can rearrange the previous expression slightly differently
by invoking stable conjugacy classes rather than just conjugacy classes. Recall that

C(V\,W\) =
⊔

W ′⊂W\ nd/U(W\)(F )

U(W ′)(F )ell/conj

Let’s define

Cstab(V\,W\) =
⊔

W ′⊂W\ nd/U(W\)(F )

U(W ′)(F )ell/stab

We have an obvious projection

C(V\,W\)→ Cstab(V\,W\)

with finite fibers. Moreover, the function c\ is obviously constant on the fibers so we may
rewrite

m(Π\) = lim
s→0+

∫
Cstab(V\,W\)

DH\(x)c\(x)∆(x)sdx

We will now compare the two expressions (for \ = i or a). First set

Cstab(V\,W\)
∗ :=

⊔
W ′ 6=0

U(W ′)(F )ell/stab

Then I claim that we have a natural bijection

Cstab(Va,Wa)
∗ ' Cstab(Vi,Wi)

∗

extending the one already defined

U(Wa)(F )ell/stab ' U(Wi)(F )ell/stab

We say that two nondegenerate subspacesW ′
a ⊆ Wa andW ′

i ⊆ Wi correspond to each other if
they have same dimension but aren’t isomorphic as hermitian spaces. Every U(Wa)(F )-orbit
of nonzero nondegenerate subspaces W ′

a ⊆ Wa corresponds to exactly one U(Wi)(F )-orbit
of nonzero nondegenerate subspaces W ′

i ⊆ Wi and conversely. This yields a bijection

{0 6= W ′ ⊆ Wa nondeg}/U(Wa)(F ) ' {0 6= W ′ ⊆ Wi nondeg}/U(Wi)(F )
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W ′
a 7→ W ′

i

For W ′
a and W ′

i corresponding, the situation is the same than for Wa and Wi (or for Va and
Vi), so that we get as before a natural bijection between elliptic stable conjugacy classes :

U(W ′
a)(F )ell/stab ' U(W ′

i )(F )ell/stab

Taken all together, these bijections give a one-to-one correspondence

Cstab(Va,Wa)
∗ ' Cstab(Vi,Wi)

∗

xa 7→ xi

Fact(not hard) : Condition (3) extends naturally to give the relations

ci(xi) = −ca(xa)

for all xa ∈ Cstab(Va,Wa)
∗ 7→ xi ∈ Cstab(Vi,Wi)

∗.

We also have DHi(xi) = DHa(xa) and ∆(xi) = ∆(xa) so that the contributions of xi and
xa in respectively m(Πi) and m(Πa) cancel each other in the sum m(Πi) + m(Πa). Hence,
after removing the cancelling terms in the sum, only the terms corresponding to x = 1
remain :

m(Πi) +m(Πa) = ci(1) + ca(1)

Condition (4’) tells us exactly that the first term above is 1 whereas since Ga is not quasisplit,
ga(F ) has no regular nilpotent orbits and so the second term is zero. �
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