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1.3 An approach by local trace formula

Let’s consider a general triple (G,H, ξ) where G is connected reductive over F , H is an
algebraic subgroup of G and ξ : H(F ) → C× is a character. Say that we want to study the
multiplicity

m(π) = dim HomH(π, ξ), π ∈ Irr(G)

(like in the GGP conjecture). By Frobenius reciprocity, we have

HomH(π, ξ) = HomG (π,C∞(H(F )\G(F ), ξ))

where C∞(H(F )\G(F ), ξ) := {ϕ : G(F )→ C;ϕ is smooth and ϕ(hg) = ξ(h)ϕ(g) for all h ∈
H(F ), g ∈ G(F )}. The action of G(F ) on this space is by right translation, we will denote
it by R. So m(π) is the number of time π appears discretely in C∞(H(F )\G(F ), ξ). Conse-
quently it is natural to study this (big) representation in more details. A natural way to do
this is to let act on it functions f ∈ C∞c (G(F )) by convolution, i.e. set

R(f) =

∫
G(F )

f(g)R(g)dg

then R(f) is a Kernel operator, i.e. its action on a function φ ∈ C∞c (H(F )\G(F ), ξ), is given
by

(R(f)φ) (x) =

∫
H(F )\G(F )

Kf (x, y)φ(y)dy

where Kf , the Kernel, is given by

Kf (x, y) =

∫
H(F )

f(x−1hy)ξ(h)dh

A natural way to study C∞(H(F )\G(F ), ξ) is to try to compute the trace of the operator
R(f) (for example because then we will know the character θR of R and so how R decom-
poses).
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Assume for one moment that G(F ) is compact, then all of this makes perfect sense. First
C∞(H(F )\G(F ), ξ) decomposes discretely

C∞(H(F )\G(F ), ξ) =
⊕

π∈Irr(G)

m(π)π

and the multiplicity are (always) finite. Hence, it’s not hard to deduce that R(f) is of trace
class and that

trace R(f) =
∑

π∈Irr(G)

m(π)trace π(f) (Spec)

If we are able to compute trace R(f) in another way, then by plugging f = fπ∨ (a coefficient
of π∨) in (Spec) we would get a formula for m(π).

Continuing with the framework where G(F ) is compact, since in this case R(f) is trace
class and is a Kernel operator, we have

trace R(f) =

∫
H(F )\G(F )

Kf (x, x)dx

Using the above explicit expression for the Kernel, it’s not hard to transform this last formula
into

trace R(f) =

∫
H(F )

Φ(h, f)ξ(h)dh (Geom)

where Φ(h, f) =
∫
G(F )

f(x−1hx)dx is the orbital integral (I am completely ignoring the issue
of normalizing measures here). By equaling the two expansions (Spec) and (Geom) of the
trace, we obtain the identity∑

π∈Irr(G)

m(π)trace π(f) =

∫
H(F )

Φ(h, f)ξ(h)dh

We may now apply our program : plug f = fπ∨ in this identity. Using the classical formula
Φ(g, f) = trace π(f)θπ(g), for all g ∈ G(F ), we get

m(π) =

∫
H(F )

θπ(h)ξ(h)dh

A formula that we could also have obtained by using the orthonormality properties of cha-
racters.

Back to the general case : There is one major issue if one want to do something similar
in the noncompact case : in general C∞(H(F )\G(F ), ξ) doesn’t decompose discretely and
moreover R(f) is usually not of trace class. Consequently, it seems that we are no longer able
to obtain an identity between a spectral side (Spec) and a geometric side (Geom) in general.
There is however a way to get around this that Arthur used in its proof of a local trace
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formula : we shall multiply the kernel Kf (x, x) by the characteristic function κN of some
large compact subset ΩN of H(F )\G(F ). This allows us at least to define a distribution (a
truncated trace in some sense)

JN(f) =

∫
H(F )\G(F )

κN(x)Kf (x, x)dx

in which the truncation parameter N is meant to be a positive integer. The idea is then
trying to obtain two expansions of this "truncated trace" at the limit when N →∞ :

(Spec) = lim
N→∞

JN(f) = (Geom) ?

As before we expect the spectral side to involve characters of representations and the geo-
metric side to involve orbital integrals. Of course, the sequence of compact subsets (ΩN)N>1

has to be chosen carefully if we would like to obtain something interesting. One of the main
reasonable assumptions we would like to make about it is :

(ΩN)N>1 is an increasing and exhaustive sequence of compact-open subsets of H(F )\G(F ).

Actually, in the cases we will be considering we won’t need much more, the hypothesis we
need about (ΩN) are very loose and so I won’t discuss them. There is another point that is
worst : whatever the sequence (ΩN) is, the sequence (JN(f))N>1 will almost never converge
for all f . We need to restrict ourself to some particular functions f . The assumption we will
most often ask about f is that f is strongly cuspidal.

Definition 1 A function f ∈ C∞c (G(F )) is strongly cuspidal if for all proper parabolic
subgroup P = MN ( G, we have ∫

N(F )

f(mn)dn = 0

for all m ∈M(F ).

Although we are mainly interested in the GGP case, I will first disgress and discuss
Arthur’s local trace formula. These for three reasons : first of all, Arthur’s trace formula will
be needed later, secondly there is also a local trace formula related to the GGP conjecture and
its proof follows closely on many points Arthur’s proof and finally it is also the opportunity
to introduce many objects that will appear also in the GGP trace formula.

1.4 Arthur’s local trace formula

Arthur’s trace formula deals with Arthur’s triples that are of the form

(G = H ×H,H, ξ = 1)
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where the embedding H ↪→ G is the diagonal one. By linearity we may assume f = ϕ ⊗
ϕ′ ∈ C∞c (G(F )) = C∞c (H(F )) ⊗ C∞c (H(F )). Moreover, we have a natural identification
H(F )\G(F ) = H(F ) and the action of G(F ) = H(F ) × H(F ) on it is by left and right
translation. The truncated trace should be

JN(ϕ, ϕ′) =

∫
H(F )

Kϕ,ϕ′(x, x)dx

where

Kϕ,ϕ′(x, y) =

∫
H(F )

ϕ(x−1hy)ϕ′(h)dh

SinceKϕ,ϕ′(x, x) is invariant by translation by Z(H)(F ), Arthur integrates overAH(F )\H(F )
rather than H(F ) (AH is the split part of the center of H). This is not a major issue and
we shall assume that the center of H(F ) is compact so that the previous expression is the
correct one. Arthur then proves the following statement :

Theorem 1 (Arthur) If the sequence (ΩN)N>1 is suitably chosen (here the choice really
matter), then there exists a polynomial p(ϕ, ϕ′, T ) ∈ C[T ] such that

lim
N→∞

| JN(ϕ, ϕ′)− p(ϕ, ϕ′, N) |= 0

Arthur then proceed in giving two expansions of the constant term p(0, ϕ, ϕ′). One is geo-
metric and involves orbital integral and their generalization called weighted orbital integrals,
the other one is spectral and involves characters of representations and their generalization
called weighted characters. The equality between these two expansions is Arthur’s (noninva-
riant) local trace formula. However, there is one case where p(ϕ, ϕ′, T ) is already a constant
(and so JN(ϕ, ϕ′) has a limit) : it is when ϕ is strongly cuspidal. I will now discuss the
geometric and spectral expansions of Arthur in this special case.

1.4.1 Geometric expansion

This one involves orbital integrals and weighted orbital integrals. Recall the definition
of the usual orbital integrals. For x ∈ Hreg(F ), ϕ ∈ C∞c (H(F )) and the choice of a Haar
measure on Hx(F ) (Hx = ZH(x)), the orbital integral of ϕ at x is

Φ(x, ϕ) = ΦH(x, ϕ) =

∫
Hx(F )\H(F )

ϕ(h−1xh)dh

A weighted orbital integral depends on the following data :
– A Levi M ⊂ H ;
– A point x ∈M(F ) ∩Hreg(F ) ;
– A choice of a special maximal compact subgroup K of H(F )
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The important property we use about K is that H(F ) = P (F )K for all parabolic sub-
group P of H. These data being fixed, we may define a weighted orbital integral

ΦM(x, ϕ) =

∫
Hx(F )\H(F )

ϕ(h−1xh)vM(h)dh

for all ϕ ∈ C∞c (H(F )). The function vM above is the weight and has been defined by Arthur
(but we won’t need its precise definition).

Now, define a measure on Hreg(F )/conj by∫
Hreg(F )/conj

f(x)dx =
∑

T∈T (H)

| W (T ) |−1

∫
T (F )

f(t)dt

where T (H) is a set of representatives of the H(F )-conjugacy classes of maximal tori in H,
W (T ) is the Weyl group and DH(t) is the absolute value of the usual Weyl discriminant. To
be complete, we also need to define the measure on the tori T (F ) but these ones have also
been used implicitly in the definition of the weighted orbital integrals. We may now state
the geometric expansion of Arthur’s local trace formula :

Theorem 2 (Arthur) Let ϕ, ϕ′ ∈ C∞c (H(F )) and assume that ϕ is strongly cuspidal. Then,
we have

lim
N→∞

JN(ϕ, ϕ′) =

∫
Hreg(F )/conj

(−1)aM(x)DH(x)ΦM(x)(x, ϕ)ΦH(x, ϕ′)dx

where for x ∈ Hreg(F ), M(x) = ZH(AHx) i.e. the smallest Levi containing x and aM(x) =
dim(AM(x)).

Remark : Since ϕ is strongly cuspidal, we can prove that the weighted orbital integrals
of ϕ doesn’t depend on the choice of K. By "transport de structure" this implies that the
function

x ∈ Hreg(F ) 7→ (−1)aM(x)ΦM(x)(x, ϕ)

is invariant by H(F )-conjugation. In particular, the RHS of the theorem makes sense.

Let us write the result a little bit differently. Set θϕ(x) = (−1)aM(x)ΦM(x)(x, ϕ), x ∈
Hreg(F ). Then we may rewrite the result as

(Geom) lim
N→∞

JN(ϕ, ϕ′) =

∫
Hreg(F )/conj

DH(x)θϕ(x)ΦH(x, ϕ′)dx
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1.4.2 Spectral expansion

The spectral side is built on another type of distributions : characters and weighted
characters. Recall that the usual character of π ∈ Irr(H) is the distribution

ϕ ∈ C∞c (H(F )) 7→ trace π(ϕ) = ΦH(π, ϕ)

A weighted character depends on the following data :
– A Levi M ⊂ H ;
– A representation σ ∈ Temp(M) ;
– A special maximal compact subgroup K of H(F ).
As before, the only property we need about K is that H(F ) = P (F )K for all parabolic

subgroup P of H. From these datas, Arthur construct a weighted character

ϕ ∈ C∞c (H(F )) 7→ trace RM(σ)π(ϕ) = ΦM(π, ϕ)

where π = iHP (σ) is the normalized parabolically induced representation from σ, P = MUP
being any parabolic with Levi componentM , and RM(σ), the "weight", is a certain operator
(depending on K) constructed by Arthur

RM(σ) : iHP (σ)→ iHP (σ)

Before stating the spectral side of Arthur’s local trace formula, I need to introduce the spec-
tral analog of the space of (regular) conjugacy classes. For this, I need to recall some facts
about tempered representations. Denote by Reptemp(H) the category of finite length tempe-
red representations of H(F ). Let P = MN be a parabolic subgroup of H. The normalized
induction is a functor

Reptemp(M)→ Reptemp(H)

σ 7→ iHP (σ)

It turns out that this functor admits a left adjoint, the weak Jacquet module :

Reptemp(H)→ Reptemp(M)

π 7→ πwP

So we have a functorial isomorphism

HomH(π, iHP (σ)) = HomM(πwP , σ)

for all π ∈ Reptemp(H), σ ∈ Reptemp(M). The weak Jacquet module πwP is cut out in the
usual Jacquet module πP by keeping only the generalized eigenspaces in πP corresponding
to unitary characters of Z(M)(F ) (the center of M(F )).

Let Rtemp(H) be the Grothendieck group of Reptemp(H), i.e. the vectore space over C
with basis Temp(G). Since π 7→ πwP is exact, it defines a morphism
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Rtemp(H)→ Rtemp(M)

π 7→ πwP

Define Rell(H) = {π ∈ Rtemp(H); πwP = 0 for all proper parabolic P = MN ( H}.
Since the functor σ 7→ iHP (σ) is also exact, we also get morphisms

Rtemp(M)→ Rtemp(H)

σ 7→ iHP (σ)

for all parabolic subgroup P = MN ⊆ H. Define Rind(H) =
⊕

P=MN(H i
H
P (Rtemp(M)).

Then we have

Rtemp(H) = Rell(H)⊕Rind(H)

Moreover, Arthur has define a basis Tell(H) ⊂ Rell(H) (the so called elliptic representations
although they are not in general genuine representations but rather just virtual representa-
tions). Let us just say that Tell(H) contains the set Π2(H) of square-integrable irreducible
representations, that this set is invariant by any automorphism θ of H as well as by twists
by unitary unramified characters. This last condition allows us to equip Tell(M) with a na-
tural structure of real analytic variety. More precisely, let X(H) be the group of unramified
character of H(F ) (a complex torus) and ImX(H) the subgroup of unitary unramified cha-
racters. As a real groupImX(H) is isomorphic to a product of S1. Hence, it has a natural
structure of real analytic variety. Let {Tell(H)} be the set of orbits under this action. Each
of these is the quotient of ImX(M) by a finite subgroup and so is a real analytic variety.

We are now in position to define the spectral anlog of the space of (regular) conjugacy
classes. Let

X (H) = {(M,σ);M ⊂ H Levi subgroup, σ ∈ Tell(M)} /H(F )− conj

We may, and will, identify X (H) with a set of virtual tempered representations of H(F ) by

[M,σ] ∈ X (H) 7→ π = iHP (σ) ∈ Rtemp(H)

for any choice of P = MUP . We need also to define a measure on X (H). Fix a set M of
representatives of the H(F )-conjugacy classes of Levi subgroup of H. Then we have

X (H) =
⊔

M∈M

Tell(M)/W (M)

where W (M) is the Weyl group of M . Each Tell(M) is a real analytic variety and so X (H)
is naturally equipped with a topology. We put on X (H) the measure given by∫

X (H)

f(π)dπ =
∑
M∈M

∑
O∈{Tell(M)}

∫
O
f(iHM(σ))dσ
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where the last measure dσ is some ImX(M)-invariant measure on O. We may now state the
spectral expansion of Arthur’s local trace formula

Theorem 3 Let ϕ, ϕ′ ∈ C∞c (H(F )) and assume that ϕ is strongly cuspidal. Then, we have

lim
N→∞

JN(ϕ, ϕ′) =

∫
X (H)

(−1)aM(π)ΦM(π)(π, ϕ)ΦH(π∨, ϕ′)dπ

whereM(π) is any Levi from which π comes from and π∨ is the contragredient representation
of π.

Remark : The distribution ΦM(π)(π, ϕ) a priori depends on the choice of K as well as the
choice of the date (M(π), σ) from which π comes from. Actually, since ϕ is strongly cuspidal,
it is possible to show that it doesn’t depend on those. In particular, the RHS of the theorem
makes sense.

Again, we will rewrite the result slightly differently. Set θ̂ϕ(π) = (−1)aM(π)ΦM(π)(π, ϕ).
We may now rewrite the spectral expansion as

(Spec) lim
N→∞

JN(ϕ, ϕ′) =

∫
X (H)

θ̂ϕ(π)ΦH(π∨, ϕ′)dπ

1.4.3 The final identity

Equaling the two expansions (Geom) and (Spec) of the limit, we are left with the identity

(Arthur)

∫
Hreg(F )/conj

DH(x)θϕ(x)ΦH(x, ϕ′)dx =

∫
X (H)

θ̂ϕ(π)ΦH(π∨, ϕ′)dπ

for all ϕ, ϕ′ ∈ C∞c (H(F )) with ϕ strongly cuspidal. By definition of the Harish-Chandra
character, we have

ΦH(π∨, ϕ′) =

∫
H(F )

ϕ′(h)θπ∨(h)dh

Plugging this in the spectral side of (Arthur), and switching the two integrals (the conver-
gence is absolute), we obtain that the spectral side is equal to∫

H(F )

ϕ′(h)

∫
X (H)

θ̂ϕ(π)θπ∨(h)dπdh

On the other hand, by the Weyl integration formula the geometric side is equal to∫
H(F )

ϕ′(h)θϕ(h)dh

Now, since the equality between the two ought to be true for all ϕ′ ∈ C∞c (H(F )), we obtain
a sligthly different version of Arthur’s local trace formula that will be the one we will use
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(Arthur′) θϕ(h) =

∫
X (H)

θ̂ϕ(π)θπ∨(h)dπ

for all h ∈ Hreg(F ) and for all ϕ ∈ C∞c (H(F )) that is strongly cuspidal.

Remark : It may be shown, and this will be use, that in (Arthur’) the integrant is compactly
supported (i.e. supported on a finite number of components. This due to the fact that for
K ′ a compact-open subgroup of H(F ) there are only finitely many connected components
of X (H) that contain representations having nonzero fixed vector by K ′.

1.4.4 A first consequence

We will deduce here a first consequence of Arthur’s local trace formula that will be of
some use later. Let ϕ ∈ C∞c (H(F )) be strongly cuspidal. Recall that the characters θπ admit
local expansions of the form

θπ(xeX) =
∑

O∈Nil(hx)

cπ,O(x)ĵ(O, X)

x ∈ Hss(F ) and ω = ωπ some open neighborhood of 0 in gx(F ). It is easy to see that the
neighborhood ωπ can be uniformly chosen for π in some compact subset of X (H). Moreover
the coefficients cπ,O(x), seen as functions of π, are locally constant on X (H). Consequently,
using (Arthur’) and the remark at the end of the last paragraph, we deduce that θϕ also
admits local expansions of the same form :

θϕ(xeX) =
∑

O∈Nil(hx)

cϕ,O(x)ĵ(O, X)

where the coefficients cϕ,O(x) are given by

cϕ,O(x) =

∫
X (H)

θ̂ϕ(π)cπ∨,O(x)dπ

We may now define a function

cϕ : Hss(F )→ C

by

cϕ(x) =
1

| Nilreg(hx) |
∑

O∈Nilreg(hx)

cϕ,O(x)

We have the following formula for cϕ :

(1) cϕ(x) =

∫
X (H)

θ̂ϕ(π)cπ∨(x)dπ
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Call an invariant function θ : H(F )→ C a quasicharacter if it admits local expansions of
the form above. We may now restate our discussion by

Proposition 1 For all strongly cuspidal ϕ ∈ C∞c (H(F )), the function θϕ is a quasicharacter.

1.5 A local trace formula for GGP

Let’s now consider a GGP triple (unitary case) :

G = U(V )× U(W )←↩ H = N o U(W )

ξ : N(F )→ C×

As before, we want to study the expression

JN(f) =

∫
H(F )\G(F )

κN(g)

∫
H(F )

f(g−1hg)ξ(h)dhdg

f ∈ C∞c (G(F )). We would like to give two expansions of this expression as N → ∞ : one
geometric, the other one spectral. For that, we need to assume that f is strongly cuspidal.

We will first state the result, then explain why the formula for the multiplicity follows
from it. Then I will try to give an overview of how the trace formula is proved.

1.5.1 The result

Recall that we have defined a space C(V,W ) of conjugacy classes in H(F ) :

C(V,W ) =
⊔

W ′⊂W nd/U(W )(F )

U(W ′)(F )ell/conj

and a measure on it.

For f ∈ C∞c (H(F )) strongly cuspidal, we defined a function θf which is a quasicharacter.
From this quasicharacter we constructed a function

cf : Gss(F )→ C

by

cf (x) =
1

|Nilreg(gx)|
∑

O∈Nilreg(gx)

cf,O(x)

Now, extend the multiplicity π ∈ Temp(G) 7→ m(π) by linearity to Rtemp(G). We may now
state the result
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Theorem 4 Let f ∈ C∞c (G(F )) be strongly cuspidal. We have the following two expansions
of the limit :

(Geom) lim
N→∞

JN(f) = lim
s→0+

∫
C(V,W )

DH(x)cf (x)∆(x)sdx

(Spec) lim
N→∞

JN(f) =

∫
X (G)

θ̂f (π)m(π∨)dπ

How to deduce from this the formula for the multiplicity ? What we want is to prove that
m(π) = mgeom(π) for all π ∈ Rtemp(G). Recall that we have a decomposition

Rtemp(G) = Rell(G)⊕Rind(G)

and that Tell(G) is a basis of Rell(G). So it suffices to prove the formula separately for
π ∈ Rind(G) and for π ∈ Tell(G)

Case π ∈ Rind(G) : Here we use induction. So we assume

(Hyp) The formula for the multiplicity is true for all pair W ′ ⊂ V ′ of hermitian spaces
(with odd codimension) such that

(dim V ′, dim W ′) ≺lex (dim V, dim W )

where ≺lex denotes the lexical order.

By linearity we may assume that π = iGQ(σ) where Q = LU is a proper parabolic subgroup
of G and σ ∈ Temp(L). Without loss of generality, we may also assume that Q is a maximal
proper subgroup of G. Consequently, we have either Q = QV × U(W ) or Q = U(V ) × QW

where QV (resp. QW ) is a maximal proper parabolic subgroup of U(V ) (resp. U(W )). We
will treat the first case, the second one being analog. Since QV is a proper maximal subgroup
of U(V ) there exists an isotropic subspace Z ⊂ V such that

QV = StabU(V )(Z)

Let V ′ be an (automatically non degenerate) complement of Z in Z⊥. Then QV admits
a Levi decomposition QV = LVUV where

LV = GL(Z)× U(V ′)

According to this decomposition, σ decomposes as a tensor product

σ = (σGL ⊗ σV ′)⊗ σW
Up to conjugation, we may assume that V ′ ⊂ W or W ⊂ V ′. This allows us in both
cases to define the multiplicity m(σ′) and the geometric multiplicity mgeom(σ′) where σ′ =
σV ′ ⊗ σW ∈ Temp(G′) and G′ = U(V ′) × U(W ). The formula for π now follows from the
induction hypothesis once we have the following proposition
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Proposition 2 We have the equalities
(i) m(π) = m(σ′) ;
(ii) mgeom(π) = mgeom(σ′)

Proof : I will only explain how to prove (ii). The character of π is supported on L(F )G =
{g−1lg; g ∈ G(F ) l ∈ L(F )} where L = LV × U(W ) is a Levi component of Q. Hence the
integral defining mgeom(π) is in this case supported on L(F )G/conj ∩ C(V,W ). It is easy
to see that this intersection is contained in G′(F ) = U(V ′)(F ) × U(W )(F ) and is equal to
C(V ′,W ) (seen as a space of conjugacy classes in G′(F )). Moreover, there is a well known
relation between the character of σ and the character of π. Using this relation it is not so
hard to obtain an analogous relation between cπ and cσ. Applied here, it gives

DH(x)cπ(x) = DH′
(x)cσ′(x)cσGL(1)

for all x ∈ C(V ′,W ). Recall the result of Rodier saying that cσGL(1) counts the number of
Whittaker models for σGL. Since σGL is a tempered representation of a general linear group,
this number is one. Hence, DH(x)cπ(x) = DH′

(x)cσ′(x) for all x ∈ C(V ′,W ). We have now
reduce the integral defining mgeom(π) to the integral defining mgeom(σ′). �

Case π ∈ Tell(G) : Recall that we deduced from Arthur’s trace formula that

cf (x) =

∫
X (G)

θ̂f (π)cπ∨(x)dπ

Plugging this expression of cf into the geometric side of (GGP), we get

(Geom) =

∫
X (G)

θ̂f (π) lim
s→0+

∫
C(V,W )

DH(x)cπ∨(x)∆(x)sdxdπ

(we pushed the outside integral as well as the limit inside but this is justified by absolute
convergence of the double integral and dominant convergence respectively). We recognize
the term under the interior integral above : it is mgeom(π∨). Now the identity between the
geometric and the spectral expansions of the theorem may be written

(1)

∫
X (G)

θ̂f (π) (m(π∨)−mgeom(π∨)) dπ = 0

for all strongly cuspidal f ∈ C∞c (G(F )). Now, we have a natural decomposition

X (G) = Tell(G) t Xind(G)

where Xind(G) = X (G) ∩ Rind(G). Making use of the previous case, the previous equality
becomes ∑

π∈Tell(G)

θ̂f (π)m(π∨) = 0
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It suffices now to find, for a given π0 ∈ Tell(G), a strongly cuspidal function f ∈ C∞c (G(F ))
such that

θ̂f (π) = trace π(f) =

{
1 if π = π0

0 otherwise.

for all π ∈ Tell(G).

Proposition 3 Such a strongly cuspidal function exists.

The proof uses a Paley-Wiener theorem and a more general version of the local trace
formula of Arthur.

1.5.2 Proof of the geometric expansion

Before going into its proof, recall the geometric expansion of the limit :

lim
N→∞

JN(f) = lim
s→0+

∫
C(V,W )

DH(x)cf (x)∆(x)sdx

Remark one main difference with the geometric side of Arthur’s local trace formula : in
Arthur’s formula you only see contributions from regular points whereas here a lot more
semisimple conjugacy classes are contributing. These contributions reflect the existence of
singularities in JN(ϕ) as N →∞. Therefore we cannot follow directly Arthur’s proof which
is unable to tell us what happens near these singularities. Indeed, let’s try to follow Arthur’s
proof in the codimension one case. The first step is to apply the Weyl integration formula
for H. As a result, we obtain the following expression of JN(f) :

JN(f) =

∫
Hreg(F )/conj

DH(x)

∫
Gx(F )\G(F )

f(g−1xg)κN,x(g)dgdx

where

κN,x(g) =

∫
Hx(F )\Gx(F )

κN(tg)dt

then Arthur proceeds to show that the integrand above as a limit which is a weighted orbital
integral. The convergence of this integrand is uniform on compact subset of Hreg(F )/conj
so that Arthur’s need to have a control of what happens near singular points. The main
ingredient at this point of Arthur’s proof is to show that the factor DH(x) take care of the
possible divergence near singular points. For Arthur’s triple, we have DH = (DG)1/2 which
is exactly what we need in order to control divergence around singular points. In the GGP
case however, the factor DH , which is usually smaller than (DG)1/2, cannot take care of that
divergence. To get around this, we shall instead follow the following strategy :

13



1. Use a descent method imitated from Harish-Chandra to localize the problem near a
semisimple point x ∈ Gss(F ). Once the problem has been localize, we are left with an
expression of the same type but for a localize triple (Gx, Hx, ξx) which is a product of a
GGP triple and an Arthur triple. If x is not central the GGP triple is smaller than the
one we started from and so we may use induction. So only the case where s is central
needs further attention.

2. Near a central point we may use the exponential map to reduce everything over the
Lie algebra ;

3. Over the Lie algebra we may perform a Fourier transform. After this Fourier transform,
the expression converges well better and we are able to prove that the expression has
a limit and to compute this limit (following the methods of Arthur).

Let’s do the first step. For x ∈ Gss(F ), we call slice through x an open Gx(F )-invariant
neighborhood Ω ⊂ Gx(F ) of x satisfying the following condition :

The map

Ω×Gx(F ) G(F )→ G(F )

(y, g) 7→ g−1yg

is an open immersion (where Ω×Gx(F )G(F ) = (Ω×G(F )) /Gx(F ) the action being (y, g).gx =
(g−1
x ygx, g

−1
x g))

In particular, we have

∀g ∈ G(F ), g−1Ωg ∩ Ω 6= ∅ ⇒ g ∈ Gx(F )

By choosing Ω sufficiently small, we may assume that

DG(y) = DG(x)DGx(y), ∀y ∈ Ω

(where as usual DG and DGx denote the absolute value of the Weyl determinants). Let
ΩG = {g−1yg; g ∈ G(F ) y ∈ Ω}. Then using Weyl integration formula, we easily get∫

ΩG
ϕ(g)dg = DG(x)

∫
Gx(F )\G(F )

∫
Ω

ϕ(g−1yg)dydg

for all ϕ ∈ C∞c (ΩG).

There is also a notion of slice for the (usually nonreductive) group H(F ) : for x ∈ Hss(F )
a slice through x is an Hx(F )-invariant open neighborhood ΩH ⊂ Hx(F ) which is invariant
by translation by Ru(Hx)(F ) = Nx(F ) and such that

ΩH ×Hx(F ) H(F )→ H(F )

(y, h) 7→ h−1yh
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is an open immersion. If the slice ΩH is chosen sufficiently small, the same integration formula
than before is true (with H instead of G).

The subsets of the form ΩG (x ∈ Gss(F ) and Ω a slice through x) form a basis for a
topology on G(F ) (the "invariant topology"). We define exactly the same way an "invariant
topology" on H(F ). The following two easy facts are left as exercises :

(A) H(F )G = {g−1hg;h ∈ H(F ) g ∈ G(F )} is closed in G(F ) equipped with the invariant
topology ;

(B) The invariant topology on H(F ) is the same than the one induced from the invariant
topology on G(F ) through the inclusion H(F ) ⊂ G(F ).

Now, by some partition of unity, we may assume that there exists x ∈ Gss(F ) and a slice
Ω ⊂ Gx(F ) through x sufficiently small such that

Supp(f) ⊂ ΩG

Case x 6∈ H(F )G : Then by property (A) above, we may choose Ω sufficiently small such that
ΩG ∩H(F ) = ∅. Then we easily check that JN(f) = 0 for all N and Jgeom(f) = 0.

Case x ∈ H(F )G : Then we may as well assume that x ∈ Hss(F ). By property (B) above, we
may choose Ω sufficiently small such that ΩG ∩H(F ) ⊂ ΩH

H for some small slice ΩH through
x in H(F ). If ΩH is also sufficiently small, we may apply the descent integration formula
and get

JN(f) = DH(x)

∫
Hx(F )\G(F )

κN(g)

∫
ΩH

f(g−1yg)ξ(y)dydg

For g ∈ G(F ), define gfx ∈ C∞c (Hx(F )) to be given by

gfx(h) =

{
f(g−1hg) if h ∈ ΩH

0 otherwise.

Then we may rewrite the previous expression of JN(f) as

JN(f) = DH(x)

∫
Gx(F )\G(F )

JGxN,g(
gfx)dg

where JGxN,g is the distribution on Gx(F ) defined by

JGxN,g(ϕ) =

∫
Hx(F )\Gx(F )

κN(gxg)

∫
Hx(F )

ϕ(g−1
x hxgx)ξx(hx)dhxdgx

where ξx = ξ|Hx(F ). Remark that this distribution is an analog for the triple (Gx, Hx, ξx) of the
distribution JN for the triple (G,H, ξ). Now I claim that the triple (Gx, Hx, ξx) is the product
of an Arthur triple with a GGP triple. Indeed, let Wx = Ker(x − 1)|W , Vx = Ker(x − 1)|V
and W x = Im(x− 1) then we have the decomposition
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(Gx, Hx, ξx) = (U(Vx)× U(Wx), Nx o U(Wx), ξx)× (U(W x)× U(W x), U(W x), 1)

The first triple above is a GGP triple whereas the second one is an Arthur triple. Moreover,
if x is central the GGP triple is smaller than the one we started from. By some induction
argument and the local trace formula of Arthur we are left to consider only the case where x is
central (I am swapping under the carpet the problem that gfx is not always strongly cuspidal
but there is a way to go around it). We may as well assume that x = 1, then assuming that
Ω ⊂ G(F ) is sufficiently small, we may assume that Ω = eω where ω ⊂ g(F ) is a G(F )-
invariant open neighborhood of 0 on which the exponential map is defined and realized a
measure-preserving isomorphism with an open subset of G(F ). Using the exponential map,
we may then reduce everything over the Lie algebra. We get

JN(f) =

∫
H(F )\G(F )

κN(g)

∫
h(F )

fω(g−1Xg)ξ(X)dXdg

where

fω(X) =

{
f(eX) if X ∈ ω
0 otherwise.

and ξ(X) = ξ(eX). We now perform, as we said, a Fourier transform on the Lie algebra. Let
< ., . >: g(F )× g(F )→ C× be a G(F )-invariant symmetric nondegenerate bicharacter. This
allows us, as we already saw, to define a Fourier transform :

ϕ̂(X) =

∫
g(F )

ϕ(Y ) < X, Y > dY, ϕ ∈ C∞c (g(F ))

such that ̂̂ϕ(X) = ϕ(−X). Denote by h(F )⊥ the orthogonal of h(F ) in g(F ) wrt < ., . >.
Let Ξ ∈ g(F )/h(F )⊥ be the unique coset such that ξ(X) =< Ξ, X >, for all X ∈ h(F ). Set

Σ = Ξ + h(F )⊥

Then it is an exercise to show the following Fourier inversion formula∫
h(F )

ϕ(X)dX =

∫
Σ

ϕ̂(Y )dY, ϕ ∈ C∞c (g(F ))

(once the measures on h(F ) and Σ are chosen compatibly). Since we also have (̂gfω) = g(f̂ω),
we get

JN(f) =

∫
H(F )\G(F )

κN(g)

∫
Σ

f̂ω(g−1Y g)dY dg

Now, I claim that the following fact is true : there exists a (non empty) principal open subset
Σ′ = {Y ∈ Σ;Q(Y ) 6= 0}, where Q ∈ F [g]G, such that
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– Σ′ ⊂ greg(F ) ;
– The action by conjugation of H(F ) on Σ′ is free ;
– Two elements of Σ′ are G(F )-conjugate if and only if they are H(F )-conjugate.

From these properties, we get an injection Σ′/H(F ) ↪→ greg(F )/conj and a measure dΣ′/HY
on Σ′/H(F ) such that∫

Σ

ϕ(Y )dy =

∫
Σ′/H(F )

∫
H(F )

ϕ(h−1Y h)dhdΣ′/HY

the last property we need is
– The injection Σ′/H(F ) ↪→ greg(F )/conj is an open immersion sending the measure
dΣ′/HY to the measure DG(Y )1/2dconjY

So we may think of Σ′/H(F ) as an open subset of greg(F )/conj. Using these properties, we
can transform the original expression JN(f) to

JN(f) =

∫
Σ′/H(F )

DG(Y )1/2

∫
GY (F )\G(F )

f̂ω(g−1Y g)κN,Y (g)dgdconjY

where κN,Y (g) =
∫
GY (F )

κN(tg)dt. Remark that

fω strongly cuspidal ⇒ f̂ω strongly cuspidal.

Now, we are in position to use the same method than Arthur, because the factor DG(Y )1/2

will take care of the divergence near singular point, and prove that

lim
N→∞

JN(f) =

∫
Σ′/H(F )

DG(Y )−1/2

∫
GY (F )\G(F )

f̂ω(g−1Y g)vM(Y )(g)dgdconjY

=

∫
Σ′/H(F )

DG(Y )−1/2θf̂ω(Y )dconjY

This proves that JN(f) has a limit and compute this limit. However we didn’t get exactly
the formula that we wanted. The very last step is to perform some inverse Fourier transform
to get a formula involving f , and not f̂ .

1.5.3 The Spectral Expansion

Now that we saw roughly how goes the proof of the geometric expansion, I would like to
discuss briefly the proof of the spectral expansion. To simplify, I will assume that m = d− 1
so that there is no unipotent part N and the character ξ is trivial. As Arthur for his local
trace formula, the basic first step is to express f spectrally by mean of the Harish-Chandra-
Plancherel formula :

f(x) =

∫
X0(G)

trace
(
π(x−1)π(f)

)
µ(π)dπ
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for all x ∈ G(F ). Here X0(G) is a space of tempered representations of G(F ) whose definition
is very analogous to the one of X (G) :

X0(G) := {(M,σ);M ⊂ G Levi subgroup, σ ∈ Π2(G)}/G(F )− conj
The measure dπ on X (G) is defined very similarly to the one on X (G) and µ(π) is the
Harish-Chandra µ-function. Plugging this spectral expression of f in the definition of JN(f),
we get

JN(f) =

∫
H(F )\G(F )

κN(g)

∫
X0(G)

Lπ(π(g)π(f)π(g−1)µ(π)dπdg

where Lπ : End(π)∞ := {T ∈ End(π);T is biinvariant by an open subgroup K ⊂ G(F )} →
C is defined by

Lπ(T ) =

∫
H(F )

trace (π(h)T ) dh

(the integral is absolutely convergent). Obviously Lπ isH(F )×H(F )-invariant. SinceEnd(π)∞ '
π ⊗ π∨ as a G(F )×G(F )-representation, we obviously have

Lπ 6= 0⇒ m(π) 6= 0

The spectral expansion then follows closely the one of Arthur apart from one main point :
we have to show the converse of the previous implication, namely

m(π) 6= 0⇒ Lπ 6= 0

Let me sketch the proof of that fact when π is square-integrable. So, assume there exists a
nonzero element

`π ∈ HomH(π, 1)

For T ∈ End(π)∞, we have∫
G(F )

trace
(
π(g−1)T

)
π(g)edg = d(π)−1Te

for all e ∈ Vπ and where d(π) is the formal degree of π (the integral is absolutely convergent).
Now for e ∈ Vπ and T ∈ End(π)∞ there are two ways to compute the integral∫

G(F )

trace
(
π(g−1)T

)
`π(π(g)e)dg

which is again absolutely convergent. The first way is to push the integral over G(F ) inside
`π. By the above formula, we get∫

G(F )

trace
(
π(g−1)T

)
`π(π(g)e)dg = d(π)−1`π(Te)
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On the other hand, we may also decompose the integral as follows

∫
G(F )

trace
(
π(g−1)T

)
`π(π(g)e)dg =

∫
H(F )\G(F )

∫
H(F )

trace
(
π(g−1h)T

)
dh`π(π(g)e)dg

=

∫
H(F )\G(F )

Lπ(Tπ(g−1))`π(π(g)e)dg

Choosing T and e such that `π(Te) 6= 0, we see by the above two expansions that there is a
g ∈ G(F ) such that Lπ(Tπ(g−1)) 6= 0, hence Lπ 6= 0.

2 A formula for certain ε-factors
In this section, we will see that there is a formula for certain ε-factors of pairs that is

very similar to the one for the multiplicity discussed in the previous section. Even the proof
of these formulas are very close. The main point here is to consider a twisted situation
where the ε-factors will show up naturally. In the first paragraph, I collect some basic facts
and definitions about twisted group. In the second part, I describe the particular twisted
situation we want to study and I state a local trace formula for it. The resemblance between
this twisted trace formula and the one developed in the previous section should be emphasize.
On the spectral side we now have some "twisted" multiplicities. Exactly as before, our trace
formula will naturally imply a formula for this twisted multiplicity. Last but not least, in the
third paragraph we show that these twisted multiplicities are, in our particular situation,
related to ε-factors of pairs.

2.1 Twisted Groups

We now need to consider a slight generalization of the abstract setting of triples (G,H, ξ) :
we shall allow G and H to be twisted groups. Twisted groups have been introduce by Labesse
and are a convenient way to talk about pairs (G, θ) where G is a connected algebraic group
(over F ) and θ is an automorphism of G.

Definition 2 (i) A twisted group (over F ) is a pair (G, G̃) where
– G is a connected algebraic group over F ;
– G̃ is a G-bitorsor, i.e. it is an algebraic variety over F with two left and right com-
muting actions

G× G̃×G→ G̃

(g, γ̃, g′) 7→ gγ̃g′

each of them making G̃ into a principal homogeneous space under G.
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Remark : For (G, G̃) a twisted group, we have a natural action of G̃ on G, γ̃ 7→ adγ̃,
defined by the relation

adγ̃(g)γ̃ = γ̃g

for all g ∈ G. Moreover, we may pass from a pair (G, θ) as above to a twisted group by
setting G̃ = Gθ. Then we have adθ = θ.

We will always assume that our twisted groups satisfy the condition

G̃(F ) 6= ∅

In what follow,let (G, G̃) be a twisted group (usually we will abbreviate and just talk
about G̃ to be a twisted group).

(ii) We say that the twisted group G̃ is reductive if the connected group G is.

(iii) A (smooth) representation of G̃(F ), is a pair (π, π̃) where
– π : G(F )→ GL(Vπ) is a smooth representation of G(F ) ;
– π̃ : G̃(F )→ GL(Vπ) is a map such that

π̃(gγ̃g′) = π(g)π̃(γ̃)π(g′)

for all g, g′ ∈ G(F ), γ̃ ∈ G̃(F ).
Remark : If G̃ comes from a pair (G, θ) then a representation π of G(F ) extends to a
representation π̃ of G̃(F ) if and only if π ' π ◦ θ.

(iv) The (smooth) contragredient of a representation (π, π̃) of G̃(F ) is the representation
(π∨, π̃∨) where
– π∨ is the smooth contragradient of π ;
– π̃∨ : G̃(F )→ GL(Vπ∨) is the map defined by

< π̃(γ̃)v, π̃∨(γ̃)v∨ >=< v, v∨ >

for all v ∈ Vπ, v∨ ∈ Vπ∨.
(v) We say that a representation (π, π̃) of G̃(F ) is irreducible if π is.

(vi) Two representations (π, π̃) and (π′, π̃′) of G̃(F ) are said to be equivalent if π ' π′.

Remark : We always have π̃ ' cπ̃ for all c ∈ C×. We will denote by Irr(G̃) the set of
equivalence classes of irreducible representations π̃ of G̃(F ).

(vii) If G̃ is a reductive twisted group and (π, π̃) is a representation of G̃(F ) then we say
that this representation is tempered (resp. square integrable) if the representation π is
tempered (resp. square integrable). This allows us to define the corresponding subsets
Temp(G̃) and Π2(G̃) of Irr(G̃).
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We will use a slight abuse of notation and talk about a representation π̃ of a twisted
group G̃(F ) the other component π being implicit.

Let G̃ be a reductive twisted group and π̃ be an irreducible representation of G̃(F ). Then
we may define as in the nontwisted case a distribution θπ̃ on G̃(F ) by setting

θπ̃(f̃) = trace π̃(f̃)

for f̃ ∈ C∞c (G̃(F )). This distribution is, as in the nontwisted case, represented by a locally
integrable function :

θπ̃(f̃) =

∫
G̃(F )

f̃(γ̃)θπ̃(γ̃)dγ̃

The function θπ̃ (the character of π̃) satisfies properties similar to characters of connected
groups. In particular it admits local expansions

θπ̃(x̃eX) =
∑

O∈Nil(gx̃)

cπ̃,O(x̃)ĵ(O, X)

for all X ∈ ω a neighborhood of 0 in gx̃(F ) and where x̃ ∈ G̃ss(F ) is semisimple and
Gx̃ = ZG(x̃) is the centralizer of x̃ in G. Thus we may define, exactly the same way than in
the connected case, a function

cπ̃ : G̃ss(F )→ C

by averaging the coefficients of the previous local expansion corresponding to regular nil-
potent orbits in gx̃(F ).

Let’s now consider the following situation. Assume we have a triple (G̃, H̃, ξ̃) where

– (G, G̃) and (H, H̃) are twisted groups over F the first one being reductive ;
– There is an embedding of twisted groups

(H, H̃) ↪→ (G, G̃)

– ξ̃ : H̃(F )→ C× is a character of H̃(F ) (i.e. a 1-dimensional representation).
Let π̃ be an irreducible representation of G̃(F ). What is the analog of the multiplicity

m(π) in this situation ? We don’t want to consider the space of H̃(F )-equivariant homomor-
phisms

HomH̃(π̃, ξ̃)

because its dimension vary widely in the equivalence class of π̃ (in which we may multiply
π̃ by a nonzero complex scalar) : in the same equivalence class it can be at the same time
positive dimensional and zero. We shall give another definition for a multiplicity in this
twisted setting. Consider the space
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HomH(π, ξ)

and assume that it is finite dimensional. For ` ∈ HomH(π, ξ) and h̃ ∈ H̃(F ) the linear
form ξ̃(h̃)` ◦ π̃(h̃)−1 again belongs to HomH(π, ξ) and doesn’t depend on the choice of h̃.
Denote this new linear form by ˜̀. Then we may define a "generalized" multiplicity ε(π̃) in
our context by setting

ε(π̃) := trace
(
` ∈ HomH(π, ξ) 7→ ˜̀)

2.2 A local twisted trace formula

We will now introduce a case of the previous abstract setting where it is possible to
develop as in the previous section a trace formula.

Fix for all nonnegative integer n an E-vector space Vn of dimension n with a basis
v1, . . . , vn of it. Let (Mn, M̃n) be the following twisted group :

Mn := RE/FGL(Vn)

M̃n := Sesq∗(Vn) := {γ̃ : Vn × Vn → E nondegenerate sesquilinear form}

The right and left actions of Mn on M̃n are given by

gγ̃g′ = γ̃(g−1., g′.)

for all g, g′ ∈Mn(F ), γ̃ ∈ M̃n(F ).

Remark : We have an isomorphismMn ' RE/FGLn and the twisted group (Mn, M̃n) comes
from the pair (Mn, θn) where θn is the automorphism ofMn given by thetan(g) = tg−1 (where
c : g 7→ g is conjugation with respect to the nontrivial element in Gal(E/F )). We deduce
that a representation π admits an extension to M̃n(F ) iff π ' π∨ ◦ c. We will call such a
representation a conjugate-dual representation.

We also need to fix embeddings, for n 6 k,

Mn ↪→Mk

M̃n ↪→ M̃k

compatible in an obvious sense (that is embeddings of twisted groups). Since we fixed basis,
we have a decomposition Vk = Vn⊕ < vn+1, . . . , vk >. This already gives a natural embedding
Mn ↪→ Mk. Now the embedding M̃n ↪→ M̃k is defined as follows : it sends γ̃ ∈ M̃n to the
sesquilinear form γ̃ + hn,k, where hn,k is the hermitian form on < vn+1, . . . , vk > defined by

hn,k(vi, vj) = δi,j
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for n+ 1 6 i, j 6 k.

We are now going to introduce the triples we are interested in. Let d > m be two
nonnegative integers of distinct parities : d 6≡ m mod 2. There is a triple associated to such
a pair of integers and this is of the following form

G̃ = M̃d × M̃m ←↩ H̃ = M̃m

ξ̃ : H̃(F )→ C×

g̃mn ∈ H̃(F ) = M̃m(F )N(F ) 7→ ξ(n)

where N is a certain unipotent subgroup of Md which is invariant by conjugation by M̃m

and ξ is a certain character on N(F ) invariant by conjugation by M̃m(F ). The embedding
of H̃ into G̃ is given by the natural inclusion on the first factor and the natural projection
onto M̃m on the second factor. The unipotent subgroup N and its character ξ may be
defined as follows. Let P be a minimal parabolic subgroup of Md stable under conjugation
by M̃m. Let N = Radu(P ) be its unipotent radical. Now choose ξ to be any M̃m(F )-invariant
character of N(F ) which is generic for this property (i.e. with minimal stabilizer). We may
give a more concrete description of (N, ξ) as follows. Recall that we have a decomposition
Vd = Vm⊕ < vm+1, . . . , vd > and that we fixed an hermitian form hd,m on << vm+1, . . . , vd >.
Since this spoace is odd dimensional, we may find another basis of it (zi)i=0,±1,...,±r, where
2r + 1 = d−m, such that

hZ(zi, zj) 6= 0⇒ i = −j

Let Z+ =< zr, . . . , z1 >. Now we may choose P to be the parabolic subgroup ofMd stabilizer
of the flag

< zr > ⊂ . . . ⊂< zr, . . . , z1 >= Z+ ⊂ Z+⊕ < z0 > ⊕Vm
⊂ Z+⊕ < z0 > ⊕Vm⊕ < z−1 >⊂ . . . ⊂ Z+⊕ < z0 > ⊕Vm⊕ < z−1, . . . , z−r >= Vd

In a basis of Vd adapted to this decomposition, P is the group of upper triangular by blocks
matrix of some form. As we said, we take N = Radu(P ). We may now take for ξ the character
of N(F ) defined by

ξ(n) = ψ

(
r−1∑
i=−r

hZ(nzi, z−i−1)

)
for all n ∈ N(F ), where ψ : E → C× is a nontrivial character trivial over F .

We now would like to study the generalized multiplicity ε(π̃), π̃ ∈ Temp(G̃), associated
to the triple (G̃, H̃, ξ̃) we just defined. For that, we are naturally lead to consider, as in the
nonconnected case, a sequence of distributions of the form
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JN(f̃) =

∫
H(F )\G(F )

κN(g)

∫
H̃(F )

f̃(g−1h̃g)ξ̃(h̃)dh̃dg

for f̃ ∈ C∞c (G̃(F )). We would like this expression to have a limit as N → ∞ and find two
ways of computing the limit. As before, this is possible only for some particular choices of
(κN)N>1 (but the hypothesis are still very loose and I won’t discuss them) and we have to
assume that f̃ is strongly cuspidal (there is a natural notion of strongly cuspidal for twisted
groups). With these restrictions, we are able to prove the existence of a limit and with a
proof very similar to the one we already discussed, we obtain :

Theorem 5 Let f̃ ∈ C∞c (G̃(F )) be strongly cuspidal. Then JN(f̃) admits a limit as N →∞
and we have the following two expansions of the limit :

(Geom) lim
N→∞

JN(f̃) = lim
s→0+

∫
C̃(d,m)

cf̃ (x̃)∆(x̃)sdx̃

(Spec) lim
N→∞

JN(f̃) =

∫
X G̃

θ̂f̃ (π̃)ε(π̃∨)dπ̃

where
– C̃(d,m) =

⊔
n6n M̃n,ss(F )/conj is a space of conjugacy classes in G̃(F ) equipped with

a natural measure on it ;
– X G̃ is a certain space of virtual tempered representations of G̃(F ), this is the twisted
analog of the space X̃G. It also comes with a natural measure on it.

– The other terms cf̃ , θ̂f̃ , ∆ are twisted versions of the analogous terms defined in the
first section.

For π̃ ∈ Temp(G̃), define

εgeom(π̃) := lim
s→0+

∫
C̃(d,m)

cπ̃(x̃)∆(x̃)sdx̃

Exactly as with the GGP trace formula, we deduce from the previous theorem the following
formula for the generalized multiplicity ε(π̃) :

Corollary 1 For all π̃ ∈ Temp(G̃) we have the equality

ε(π̃) = εgeom(π̃)
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2.3 Relation between ε(π̃) and local ε factors of pairs

What will be interesting for us is that there exists a relation between the generalized
multiplicity ε(π̃) and certain ε factors of pairs. Let π̃ ∈ Temp(G̃) and write

π = πd ⊗ πm
where πd ∈ Temp(Md) and πm ∈ Temp(Mm) i.e. πd and πm are tempered representations
of respectively GLd(E) and GLm(E) (up to the choice of basis). Jacquet, Piatetskii-Shapiro
and Shalika have defined an L-function and an ε factor of pair

L(s, πd × πm)

ε(s, πd × πm, ψ)

where ψ is a non trivial additive character of E. These are meromorphic functions of s of
the form P (q−s)−1, P a polynomial with P (0) = 1, and cq−ns respectively. We are going
to connect the generalized multiplicity ε(π̃) with the central value of the epsilon factor
ε(1/2, πd × πm, ψ). Let’s denote this central value by ε(π, ψ). Remark that we cannot have
a direct relation between the two : ε(π̃) is proportional to the normalization of π̃ whereas
ε(π, ψ) only depends on π but have a dependence in ψ. We shall rather connect ε(π, ψ)
with the quotient of two generalized multiplicities. Since we are going to introduce a second
generalized multiplicity for the twisted group G̃ we will denote the one relative to (H̃, ξ̃) by
εGGP (π̃) (because it is related to GGP). The other generalized multiplicity we are going to
introduce will be denoted εWhitt(π̃) (because it is related to Whittaker models).

For all n > 0, set h̃n = h0,n. So, h̃n is the hermitian form on Vn defined by

h̃n(vi, vj) = δi,j

Define θn to be the automorphism adh̃n of Mn. Identifying Mn with RE/FGLn via the basis
v1, . . . , vn, we have gθn = θn

tg−1 for all g ∈ Mn, where g 7→ g is the conjugation with
respect to the unique nontrivial F -automorphism of E. Denote by Un the standard maximal
unipotent subgroup of Mn. Also, set

wn = ...

It is easy to check that wnθn fixes Un. Let ψ : E → C× be a nontrivial additive character
that is trivial over F . We may define a generic character ψn of Un(F ) by

ψn(u) = ψ(
n−1∑
i=1

ui,i+1)

for u ∈ Un(F ), where ui,j denote the coefficients of the matrix of u in the basis v1, . . . , vn.
We check that wnθn fixes the character ψn. Now set

Ũn = Unwnθn
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ψ̃n : Ũn(F )→ C×

ψ̃n(uwnθn) = ψn(u)

So Ũn is a twisted group (under Un) and ψ̃n is a character of Ũn(F ). Returning to the twisted
group G̃ = M̃d × M̃m, we may now define its twisted subgroup

Ũ = Ũd × Ũm
and a twisted character on it

ψ̃ = ψ̃d ⊗ ψ̃m
This allows us to define a new generalized multiplicity εWhitt(π̃), π̃ ∈ Temp(G̃), with respect
to the pair (Ũ , ψ̃). We have now the following

Proposition 4 For all π̃ ∈ Temp(G̃), we have an equality

εGGP (π̃) = εWhitt(π̃)ε(π, ψ)ωπm(−1)

Remark : Although not apparent in the notation, the generalized multiplicity εWhitt(π̃)
depends on the character ψ. This cancels on the RHS the dependence in ψ of ε(π, ψ).

Proof : This follows rather directly from the local functional equation of Jacquet, Piatetskii-
Shapiro and Shalika. Let me explain how it works in the case m = d − 1. Decompose
π = πd ⊗ πm, πd ∈ Temp(Md), πm ∈ Temp(Mm). Fix two nonzero Whittaker functionals

λπd ∈ HomUd(πd, ψd)

λπm ∈ HomUm(πm, ψm)

(we may find some because πd and πm are tempered). Let

e ∈ Vπd 7→ W d
e ∈ C∞c (Ud(F )\Md(F ), ψd)

e′ ∈ Vπm 7→ Wm
e′ ∈ C∞c (Um(F )\Mm(F ), ψm)

be the corresponding Whittaker models. So We(g) = λπd(πd(g)e) for e ∈ Vπd and We′(h) =
λπm(πm(h)e′) for e′ ∈ Vπm .

Remark now that HomU(π, ψd⊗ψm) is one dimensional and has a basis given by λd⊗λm.
By definition of the generalized multiplicity, we have

εWhitt(π̃)(λd ⊗ λm) = (λd ⊗ λm) ◦ π̃(wdθd, wmθm)

By homogeneity of the equality of the proposition, we may assume that π̃ is normalized so
that εWhitt(π̃) = 1. This means that π̃ = π̃d⊗ π̃m where π̃d and π̃m are the unique extensions
of πd and πm to M̃d(F ) and M̃m(F ) respectively such that
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λπd ◦ π̃d(wdθd) = λπd

λπm ◦ π̃m(wmθm) = λπm

For s ∈ C, e ∈ Vπd and e′ ∈ Vπm , let

L(W d
e′ ,W

m
e , s) =

∫
Um(F )\Mm(F )

Wm
e′ (amh)W d

e (h)|det h|s−1/2dh

where am is a diagonal matrix with diagonal coefficients that are alternating signs.
Jacquet, Piatetskii-Shapiro and Shalika have proved the following properties :

(1) this integral is absolutely convergent for Re(s) > 0 and can be extended as a meromor-
phic function of s on the whole complex plane ;

(2) we can choose e and e′ such that L(Wm
e′ ,W

d
e , 1/2) 6= 0 ;

(3) setting W̌e(g) = We(wd
tg−1) and W̌e′(h) = We′(wm

th
−1

), we have the functional equation

L(W̌e′ , W̌e, 1−s)/L(1−s, πd×πm) = ωπm(−1)ε(s, πd×πm, ψ)L(We′ ,We, s)/L(s, πd×πm)

for all e ∈ Vπd , e′ ∈ Vπm and s ∈ C (I simplified the functional equation using the fact
that πd and πm are conjugate-dual).

Now observe that the linear form

e⊗ e′ ∈ Vπ = Vπd ⊗ Vπm 7→ `(e⊗ e′) = L(W d
e ,W

m
e′ , 1/2)

is Mm(F ) = H(F )-invariant i.e. it belongs to HomH(π, 1). By property (2) above this
linear form is nonzero. On the other hand, by a result of Aizenbud, Gourevitch, Rallis and
Schiffmann the space HomH(π, 1) is at most one dimensional. Consequently, ` is a basis of
HomH(π, 1) and we have, by definition of the generalized multiplicity,

` ◦ π̃(h̃) = εGGP (π̃)`

for all h̃ ∈ H̃(F ). We may choose h̃ to be θm ∈ M̃m(F ) = H̃(F ). The previous relation is
then equivalent to

(4) L(Wm
e′1
,W d

e1
, 1/2) = εGGP (π̃)L(Wm

e′ ,W
d
e , 1/2)

for all e′ ∈ Vπm , e ∈ Vπd and where e′1 = π̃m(θm)e′ and e1 = π̃d(θd)e (the image of θm in M̃d

is θd). Because λπd is invariant by π̃(wdθd), we have

W d
e1

(g) = λπd (π(g)π̃(θd)e) = λπd
(
π̃(θd)π(tg−1)e

)
= λπd

(
π(w2

d)π̃(θd)π(tg−1)e
)

= λπd
(
π̃(wdθd)π(wd

tg−1)e
)

= λπd
(
π(wd

tg−1)e
)

= W̌ d
e (g)
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Similarly, we haveWm
e′1

= W̌m
e′ . Now comparing (4) with the functional equation (3) evaluated

at s = 1/2 (the L-function has no pole nor zero at s = 1/2) immediately lead to the relation
of the proposition. �
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