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3 Endoscopy and the more refined GGP conjecture
In this last lecture, I will state the more precise version of GGP and sketch a proof of

it. The crucial ingredients are of course the two integral formulas we have been discussing
(for the multiplicity and the ε-factors). These two will be connected using the theory of
endoscopy. Actually, we will also need endoscopy to state a precise version of the local
Langlands correspondence (for unitary groups). So, we will first discuss the more precise
version of LLC as well as its endoscopic characterization. After that, we will be able to state
the more refined version of GGP and sketch a proof of it.

We fix once and for all a nontrivial additive character ψ : E → C× which is trivial over
F . This character will mainly serve to normalize the local Langlands correspondence.

3.1 Local Langlands correspondence for unitary groups

3.1.1 Langlands parameters

Before going into the statement of the conjecture, I would like to discuss the relevant
Langlands parameters. Recall that for G a reductive connected group over F , a Langlands
parameter is an homomorphism

ϕ : WDF → LG

where WDF = WF × SU(2,R) is the Weil-Deligne group of F and LG = Ĝ oWF is the
Langlands dual group of G. This parameter has to satisfy some properties : it has to be
continuous, semisimple and make the following diagram commute

WDF
//

��

LG

��
WF WF
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Moreover, two Langlands parameters are equivalent if they are conjugated under Ĝ.

Let (G, G̃) be a twisted group over F . We also have a notion of L-group and Langlands
parameter in this twisted situation : the L-group is a twisted group LG̃ under LG and a
Langlands parameter for G̃ is a pair (ϕ, ϕ̃) of maps

ϕ : WDF → LG

ϕ̃ : WDF → LG̃

such that ϕ is a Langlands parameter for G and ϕ̃ satisfy

ϕ̃(ww′) = ϕ(w)ϕ̃(w′) = ϕ̃(w)ϕ(w′)

for all w,w′ ∈ WDF . There is also a natural notion of equivalence for these more general
Langlands parameters.

A Langlands parameter for a group G or a twisted group G̃ is expected to parametrize a
packet of tempered representations if this parameter is tempered meaning that its image in
Ĝ is bounded. We will be uniquely interested in tempered Langlands parameters for unitary
groups U(V ) and the twisted groups M̃n. In both these cases, the (tempered) Langlands
parameters may be described more concretely in terms of some Weil-Deligne representa-
tions. More precisely, Langlands parameters in these contexts are given by certain complex
representations of WDE (the Weil-Deligne group of E) satisfying some duality properties
(rather conjugate-duality properties). In order to describe those, it is convenient to fix an
element σ ∈ WF\WE (so that σ restricts to the nontrivial F -automorphism on E). Then σ
acts by conjugation on WDE and we will denote by w 7→ σwσ−1 = wσ the corresponding
automorphism.

Definition 1 Let ϕ : WDE → GL(M) be a complex finite-dimensional representation of
WDE that is continuous and semisimple. Then :

(i) We say that ϕ is conjugate-dual if there exists a nondegenerate bilinear form B : M ×
M → C such that

B(ϕ(w)e, ϕ(wσ)e′) = B(e, e′)

for all e, e′ ∈M , w,w′ ∈ WDE. Such a form B is called a conjugate-dual form on ϕ.
(ii) Let ε ∈ {±} be a sign. We say that ϕ is ε-conjugate-dual if there exists a nondegenerate

bilinear form B : M ×M → C satisfying the previous condition as well as

B(e, ϕ(σ2)e′) = εB(e, e′)

for all e, e′ ∈M . Such a form B is called a ε-conjugate-dual form on ϕ.
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Remark : Let µ : WDE → C× be a character of the Weil-Deligne group of E. By local
class field theory, µ is identified with a character of E×. Using this identification we have the
following : µ is conjugate dual iff µ is trivial on N(E×) and µ is conjugate-dual of sign +
(resp. of sign −) iff µ|F× = 1 (resp. iff µ|F× = ηE/F ). Here ηE/F : F× → F×/N(E×) ' {±1}
is the quadratic character associated to the quadratic extension E/F .

Let us first introduce the tempered Langlands parameters for M̃n, n > 0. Such a Langlands
parameter is just a conjugate-dual representation ϕ : WDE → GL(M) of dimension n

(continuous and semisimple) with bounded image. We will denote by Φ̃temp(n) the set of
such representations taken upon isomorphism. This is the set of tempered Langlands para-
meters for M̃n. Remark that the local Langlands correspondence is known in this case and is
obtained as follows. Start with a Langlands parameter ϕ ∈ Φ̃temp(n). In particular, ϕ is an
n-dimensional representation ofWDE. By the local Langlands correspondence for GLn, esta-
blished by Harris-Taylor, Henniart and Scholze, this corresponds a tempered representation
π(ϕ) of GLn(E) 'Mn(F ) : π(ϕ) ∈ Temp(Mn). Since the parameter ϕ is conjugate-dual, so
is the representation π(ϕ) i.e. π(ϕ) admits an extension π̃(ϕ) to M̃n(F ). The local Langlands
correspondence for M̃n is now the map that associates to ϕ ∈ Φ̃temp the equivalence class of
π̃(ϕ) (Note that π̃(ϕ) is only well defined up to a constant).

Let us now deal with unitary groups. So let V be an hermitian space of dimension n and
U(V ) its unitary group. A tempered Langlands parameter for U(V ) is a (−1)n+1-conjugate-
dual representation ϕ : WDE → GL(M) of dimension n (continuous and semisimple) with
bounded image. We will denote by Φtemp(n) the set of isomorphism classes of such repre-
sentations. So Φtemp(n) is our set of tempered Langlands parameters for U(V ). Although
not necessarily unique, it is sometimes convenient to assume that a parameter ϕ ∈ Φtemp(n)
comes equipped with a particular (−1)n+1-conjugate-dual form B on it. Then, we will set

Aϕ = π0(Aut(ϕ,B))

It is an elementary 2-abelian finite group. Let zϕ ∈ Aϕ be the image of −I. The pair (Aϕ, zϕ)
actually doesn’t depend on B (up to an unique isomorphism), it is why we don’t need to
carry B in the notation.

3.1.2 The Local Langlands Correspondence for unitary groups

The local Langlands correspondence is better expressed when considering two unitary
groups at the same time. Let Vi and Va be two representatives of the isomorphism classes
of hermitian spaces of dimension n with U(Vi) quasisplit. Then the LLC states two things.
First there should exist a decomposition

Temp(U(Vi)) t Temp(U(Va)) =
⊔

ϕ∈Φtemp(n)

Π(ϕ)

into finite sets called L-packets. So in particular an L-packet Π(ϕ) admits a decomposition
Π(ϕ) = Πi(ϕ) t Πa(ϕ) where Π\(ϕ) = Π(ϕ) ∩ Temp(U(V\)) (\ = i or a). Secondly, there
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should exist bijections

Âϕ ' Π(ϕ)

χ 7→ π(ϕ, χ)

where Âϕ := {χ : Aϕ → {±1}} is the set of characters of Aϕ. The bijection should be such
that π(ϕ, χ) ∈ Πi(ϕ) (resp. π(ϕ, χ) ∈ Πa(ϕ)) iff χ(zϕ) = 1 (resp. χ(zϕ) = −1). Of course,
we ask this parametrization to satisfy some properties. The properties we will impose are of
endoscopic nature. Actually, we will see that our assumptions determine the parametriza-
tion uniquely (if it exists). A representation is uniquely determined by its character θπ and
these characters are linearly independent. So, by basic Fourier inversion, it is sufficient to
understand the functions

θϕ,s =
∑
χ∈Ŝϕ

χ(s)θπ(ϕ,χ)

seen as a function on U(Vi)reg(F ) t U(Va)reg(F ), for all ϕ ∈ Φtemp(n) and s ∈ Sϕ. We will
denote by θ\ϕ,s the restriction of θϕ,s to U(V\)reg(F ) (\ = i or a). The first condition we impose
is the following

(STAB) For all ϕ ∈ Φtemp(n), the character θiϕ = θiϕ,0 is stable (i.e. is constant on stable
conjugacy classes).

The heart of the endoscopic characterization of LLC is now to come. Using classical
endoscopy first, we will express the character θϕ,s in terms of stable characters θiϕ′ leaving on
smaller quasisplit unitary groups. Using then a twisted endoscopy, we will express the stable
characters θiϕ in terms of twisted characters over the twisted group M̃n(F ). Taken together,
we obtain an expression of θϕ,s in terms of twisted characters. This will specify uniquely, if
it exists, the local Langlands correspondence.

3.1.3 Classical Endoscopy

The elliptic endoscopic groups of U(V ) (V = Vi or Va) are of the form U(Vi,+)× U(Vi,−)
where Vi,± are quasisplit hermitian spaces of dimensions n± such that n = n+ +n−. There is
an underlying endoscopic datum which among other things provides us with an embedding
of L-groups

L (U(Vi,+)× U(Vi,−)) ↪→ LU(V )

which depends on the choice of two conjugate-dual characters µ+, µ− : WDE → C× of
sign (−1)n− and (−1)n+ respectively. At the level of Langlands parameters, the previous
homomorphism of L-groups induces a map (by push-forward)

Φtemp(n+)× Φtemp(n−)→ Φtemp(n)
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which is given by

(ϕ+, ϕ−) 7→ µ+ϕ+ ⊕ µ−ϕ−
Remark that without the twists by µ+ and µ− we wouldn’t get a map into Φtemp(n) because
the sign of the conjugate-dual representation ϕ+ ⊕ ϕ− wouldn’t match. On the other hand,
we also get from the endoscopic datum a correspondence

U(Vi,+)reg(F )/stab× U(Vi,−)reg(F )/stab←→ U(V )reg(F )/stab

which may be explicitely described as follows : (y+, y−) ∈ U(Vi,+)reg(F ) × U(Vi,−)reg(F )
and x ∈ U(V )reg(F ) correspond to each other iff y = y+ + y− ∈ U(V ′)(F ) is regular
(V ′ = Vi,+ ⊕ Vi,−) and is stably conjugate to x. Recall that since V ′ and V have same
dimension, there is an isomorphism U(V )(F ) ' U(V ′)(F ) well defined up to conjugation
and which allow us to make sense of the statement : y and x are stably conjugate.

From the endoscopic datum we may deduce transfer factors. These is a function

∆ : (U(Vi,+)reg(F )/stab× U(Vi,−)reg(F )/stab)× U(V )reg(F )/conj → C

((y+, y−), x) 7→ ∆(y+, y−, x)

such that ∆(y+, y−, x) 6= 0 iff (y+, y−) and x correspond to each other. However, these transfer
factors are only well defined once you make an additional choice : that of a Whittaker datum
for U(Vi). If n is odd, this choice is harmless because there is only one conjugacy class of
Whittaker datum. However, if n is even there are two conjugacy classes of such Whittaker
datum and a choice has to be made. I claim that the additive character ψ we made allows us
to pick a particular Whittaker datum. This is the one we choose. Because of this dependence
in ψ, we will denote our transfer factors by ∆ψ (although there is no dependence if n is odd).

Assume given two functions

θ : U(V )reg(F )/conj → C

and

θ′ : U(Vi,+)reg(F )/stab× U(Vi,−)reg(F )/stab→ C

We will say that θ is the transfer of θ′ if

θ(x) =
∑
y

∆ψ(y, x)θ′(y)

for all x ∈ U(V )reg(F ), and where the sum is over all stable conjugacy classes in U(Vi,+)reg(F )×
U(Vi,−)reg(F ).

We may now state our second condition about LLC. Let (ϕ+, ϕ−) ∈ Φtemp(n+)×Φtemp(n−)
and denote by ϕ = µ+ϕ+ ⊕ µ−ϕ− ∈ Φtemp(n) the corresponding Langlands parameter of
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U(V ). There is also a element s ∈ Aϕ coming from this decomposition. Namely, choose a
(−1)n++1-conjugate-dual form B+ on ϕ+ and a (−1)n−+1-conjugate-dual form B− on ϕ−.
Then B = B+ ⊕ B− is a (−1)n+1-conjugate-dual form on ϕ and we may pick the element s
of Aut(ϕ,B) that acts trivially on µ+ϕ+ and by −I on µ−ϕ−. The image of s in Aϕ doesn’t
depend on the choices of B+, B− and will also be denoted by s. The second condition is now
the following

(CE) The characters θiϕ,s and (−1)n+1θaϕ,s are transfers of θiϕ+
× θiϕ− .

Since all element s ∈ Sϕ may be obtained in this manner, this reduces the determination of
the characters θϕ,s to the one of the form θiϕ (but for different Langlands parameters ϕ).

3.1.4 Twisted Endoscopy

There is also a twisted theory of endoscopy. The group U(Vi) is an elliptic twisted endo-
scopic group of M̃n (dim(Vi) = n). There is an underlying endoscopic datum which among
other things provides us with an embedding of twisted L-groups

LU(Vi) ↪→ LM̃n

where LU(Vi) is considered as a trivial twisted group under itself. This embedding depends
on the choice of a conjugate-dual character µ : WDE → C×. At the level of Langlands
parameters, the previous embedding gives rise to a map (by push-forwards)

Φtemp(n)→ Φ̃temp(n)

which is just ϕ 7→ µϕ. We also get from the endoscopic datum a correspondence

U(Vi)reg(F )/stab←→ M̃n,reg(F )/stab

which is only well-defined once we choose a particular element of M̃n(F ). We may choose
the element wnθn defined in the last lecture. We also get transfer factors

∆ : U(Vi)reg(F )/stab× M̃n,reg(F )/conj → C

such that ∆(y, x̃) 6= 0 if and only if y and x̃ correspond to each other. As before, there is
an additional choice to be made : that of a Whittaker datum of Mn stable by wnθn. We will
choose the Whittaker datum (Un, ψn) defined last time. Again this choice depends on the
additive character ψ we fixed.

Assume given two functions

θ̃ : M̃n,reg(F )/conj → C

and
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θ : U(Vi)reg(F )/stab→ C

We will say that θ̃ is the transfer of θ if

θ̃(x̃) =
∑
y

∆ψ(y, x̃)θ(y)

for all x̃ ∈ M̃n,reg(F ), and where the sum is over all stable conjugacy classes in U(Vi)reg(F ).
Since in this case the correspondence between stable regular conjugacy classes is a bijection,
you may also see the last formula as a way to express θ in terms of θ̃.

We are now in position to state the third and last property of the local Langlands cor-
respondence we need. Let ϕ ∈ Φtemp(n). This Langlands parameter maps to a Langlands
parameter µϕ of Φ̃temp(n). By the local Langlands correspondence for M̃n, µϕ determines
an equivalence class of tempered representations π̃(µϕ) of M̃n(F ). We may pick one dis-
tinguished element π̃(ϕ) in this equivalence class by asking that εWhitt(π̃(µϕ)) = 1 (this
normalization also depends on the character ψ). The last condition we impose on the local
Langlands correspondence is the following

(TE) θπ̃(µϕ) is a transfer of θiϕ.

As we said, this may be seen as a way to express θiϕ in terms of θπ̃(µϕ). Since the latter
is entirely determined (by LLC for general linear groups), condition (TE) entirely deter-
mines the characters θiϕ. Combined with condition (CE) this completely determines the local
Langlands correspondence for unitary groups (if it exists).

Remark : All of these have been establish by C.P.Mok (following the work of Arthur) for
quasisplit unitary groups. Namely Mok proved the existence of a local Langlands correspon-
dence for these groups satisfying properties (STAB), (CE) and (TE).

This ends our discussion of LLC for unitary groups.

3.2 The Refined GGP Conjecture

3.2.1 The statement

As in the first lecture, it is more convenient to consider two GGP triples at the same
time : (Gi, Hi, ξi) and (Ga, Ha, ξa) with Gi = U(Vi)× U(Wi) and Ga = U(Va)× U(Wa) and
where

– d = dim(Vi) = dim(Va) and m = dim(Wi) = dim(Wa) are of distinct parities :
d 6≡ m mod 2 ;

– Vi 6' Va and Wi 6' Wa (i.e. Vi and Va are two representatives for the two isomophism
classes of hermitian spaces of dimension d, and the same is true for Wi and Wa) ;
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– Gi is quasisplit.

Let ϕ ∈ Φtemp(d) and ϕ′ ∈ Φtemp(m) be two Langlands parameters. Gan, Gross and
Prasad have defined two characters χϕ,ϕ′ : Aϕ → {±1} and χϕ′,ϕ : Aϕ′ → {±1}. We will
recall their definition. For s ∈ Aϕ we will choose a lift of s, that is we choose a conjugate-dual
form B of sign (−1)d+1 on ϕ and lift s to an element of Aut(ϕ,B). We will still denote by
s the lift of s. Similarly, we choose for all s′ ∈ Aϕ′ a lift of s′. Now the characters χϕ,ϕ′ and
χϕ′,ϕ are defined by

χϕ,ϕ′(s) = ε(ϕs=−1 ⊗ ϕ′, ψ)

χϕ′,ϕ(s′) = ε(ϕ⊗ ϕ′s′=−1, ψ)

for all s ∈ Aϕ, s′ ∈ Aϕ′ . Here, ϕs=−1 (resp. ϕ′s′=−1) denotes the subrepresentation of ϕ where
s acts by −I (resp. the subrepresentation of ϕ′ where s′ acts by −I) and the ε factors are ε
factors of Weil-Deligne representations. Gan, Gross and Prasad proved that these definitions
don’t depend on the choices of the lifts and that these are truly characters. We may now
state the more refined version of GGP :

Theorem 1 Assume the local Langlands correspondence for unitary groups exists and satis-
fies properties (STAB), (CE) and (TE). Then, for all (ϕ, ϕ′) ∈ Φtemp(d) × Φtemp(m), there
is an unique pair

(π, π′) ∈ Πi(ϕ)× Πi(ϕ
′) t Πa(ϕ)× Πa(ϕ

′)

such that m(π ⊗ π′) = 1 and moreover this pair is given by

π = π(ϕ, χϕ,ϕ′)

π′ = π(ϕ′, χϕ′,ϕ)

3.2.2 The proof

The idea is fairly simple. On one hand, we have the formula for the multiplicity m(π) =
mgeom(π), π ∈ Temp(G), where G = U(V )×U(W ). This formula express the multiplicity in
terms of the character θπ of π. By using our hypothesis (CE) about classical endoscopy, we will
be able to stabilize this formula i.e. to decompose it into a sum of some "stable" multiplicities
living on endoscopic groups of G which are products of four quasisplit unitary groups. On
the other hand, we have the formula for ε-factors ε(πd × πm, ψ) = εgeom(π̃)ωπm(−1), where
πd ∈ Temp(Md), πm ∈ Temp(Mm) are conjugate-dual and π̃ ∈ Temp(M̃d×M̃m) is the unique
extension of π = πd⊗πm such that εWhitt(π̃) = 1. By the local Langlands correspondence for
general linear groups, we have the equality ε(πd × πm, ψ) = ε(ϕd ⊗ ϕm, ψ) where ϕd and ϕm
are the Weil-Deligne representations corresponding to πd and πm respectively. So this formula
may also be seen as a way to express the ε-factor ε(ϕd ⊗ ϕm, ψ) in terms of the character
θπ̃ of π̃. By our hypothesis (TE) about twisted endoscopy, we will be able to stabilize this
formula i.e. decompose it as a sum of "stable" terms living on endoscopic groups of G̃ that
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are products of two unitary groups. It will happen that these stable terms are equal to stable
multiplicities. This will allow us to connect the two formulas and give an expression of m(π)
in terms of epsilon factors. This expression will give exactly the predictions of Gan, Gross
and Prasad.

Let (ϕ, ϕ′) ∈ Φtemp(d)× Φtemp(m). We would like to compute the multiplicity m(π ⊗ π′)
for all (π, π′) ∈ Πi(ϕ) × Πi(ϕ

′) t Πa(ϕ) × Πa(ϕ
′). By basic Fourier inversion, it is sufficient

to compute

m(ϕ, s;ϕ′, s′) =
∑

χ∈Âϕ,χ′∈Âϕ′

m (π(ϕ, χ)⊗ π(ϕ′, χ′))

for all s ∈ Aϕ and s′ ∈ Aϕ′ and where we have set m (π(ϕ, χ)⊗ π(ϕ′, χ′)) = 0 if π(ϕ, χ) ⊗
π(ϕ′, χ′) is neither a representation of Gi nor of Ga.

Fix s ∈ Aϕ and s′ ∈ Aϕ′ . From the formula for the multiplicity, we deduce an expression
of m(ϕ, s;ϕ′, s′) in terms of the chracters θiϕ,s and θaϕ,s. Fix conjugate-dual forms B and B′
on ϕ and ϕ′ of sign (−1)d+1 and (−1)m+1 respectively. We may lift s and s′ to elements of
Aut(ϕ,B) and Aut(ϕ′, B′) that are involutions. Then we have decompositions

ϕ = ϕs=1 ⊕ ϕs=−1

ϕ′ = ϕ′
s′=1 ⊕ ϕ′ s

′=−1

Denote by d+, d−,m+,m− the dimensions of respectively ϕs=1, ϕs=−1, ϕ′ s′=1 and ϕ′ s′=−1. We
may obviously find Langlands parameters ϕ+ ∈ Φtemp(d+), ϕ− ∈ Φtemp(d−), ϕ′+ ∈ Φtemp(m+),
ϕ′− ∈ Φtemp(m−) and conjugate-dual characters µ+, µ−, µ′+ and µ′−, such that

ϕs=1 = µ+ϕ+

ϕs=−1 = µ−ϕ−

ϕ′ s
′=1 = µ′+ϕ

′
+

ϕ′ s
′=−1 = µ′−ϕ

′
−

Finally, consider four quasisplit hermitian spaces V+, V−, V ′+ and V ′− of respective dimensions
d+, d−, m+ and m−. Using our hypothesis of classical endoscopy (CE), we may now stabilize
the formula for m(ϕ, s;ϕ′, s′) to express it in terms of the stable characters θiϕ+

× θiϕ− and
θiϕ′+
× θiϕ′− . As a result, we get something of the form

(m-STAB) m(ϕ, s;ϕ′, s′) = mstab
µ+µ′−

(ϕ+, ϕ
′
−)mstab

µ−µ′+
(ϕ−, ϕ

′
−)
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where for example mstab
µ+µ′−

(ϕ+, ϕ
′
−) is an integral very similar to the one appearing in the

formula for the multiplicity, where the function cπ is replaced by the product of the two
functions ciϕ+

=
∑

π∈Πi(ϕ+) cπ and ciϕ′− =
∑

π∈Πi(ϕ′−) cπ.

On the other hand, we may also apply our twisted endoscopy assumption (TE) to sta-
bilize εgeom(π̃). Let d and m be two nonnegative integers of distinct parities. Consider two
Langlands parameters ϕ ∈ Φtemp(d), ϕ′ ∈ Φtemp(m) and two conjugate-dual characters µ and
µ′. By twisting, we get two Langlands parameters µϕ ∈ Φ̃temp(d) and µ′ϕ′ ∈ Φ̃temp(m). We
will denote by π̃(µϕ) ∈ Temp(M̃d) and π̃(µ′ϕ′) ∈ Temp(M̃m) the unique representations in
the corresponding L-packets such that

εWhitt(π̃(µϕ)) = εWhitt(π̃(µ′ϕ′)) = 1

The formula for ε-factors gives us an equality

ε(µϕ⊗ µ′ϕ′, ψ) = εgeom(π̃)ωπ(µ′ϕ′)(−1)

where εgeom(π̃) is an expression depending on the twisted character of π̃ = π̃(µϕ)⊗ π̃(µ′ϕ′).
We may now use our hypothesis (TE) to stabilize this formula. The result is the following

(ε-STAB)ε(µϕ⊗ µ′ϕ′) =

{
mstab
µµ′ (ϕ, ϕ

′) if µϕ⊗ µ′ϕ′ has sign −
mstab
µ (ϕ, 0)mstab

µ′ (ϕ′, 0) if µϕ⊗ µ′ϕ′ has sign +

Now, I claim that for all ϕ ∈ Φtemp(n), we have mµ(ϕ, 0) = cϕ(1). By the result of Rodier
stated in the first lecture, there is an interpretation of cϕ(1) in terms of Whittaker models.
Namely, we have

cϕ(1) =
]{generic repns in Πi(ϕ)}

]{conj classes of Whittaker data}
Now (ε-STAB) gives us

ε(µϕ⊗ µ′ϕ′) = cϕ(1)cϕ′(1)

when µϕ ⊗ µ′ϕ′ is of sign +. Using this formula for ϕ′ = 0, we get cϕ(1) = 1 when dim(ϕ)
is odd. Using again this formula for ϕ′ of odd dimension (so that ϕ is even-dimensional), we
deduce that

cϕ(1) = 1

for any ϕ ∈ Φtemp(n).

Now applying (m-STAB) to s = s′ = 0, we get

m(ϕ, 0;ϕ′, 0) = cϕ(1)cϕ′(1) = 1
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This means exactly that there is an unique pair (π, π′) ∈ Πi(ϕ) × Πi(ϕ
′) t Πa(ϕ) × Πa(ϕ

′)
such that

m(π ⊗ π′) = 1

As a consequence (s, s′) 7→ m(ϕ, s;ϕ′, s′) is a character of Aϕ × Aϕ′ . Using again (m-
STAB), we deduce that

(s, s′) 7→ mstab
µ+µ′−

(ϕ+, ϕ
′
−)mstab

µ−µ′+
(ϕ−, ϕ

′
+)

is also a character of Aϕ×Aϕ′ (where ϕ+, ϕ−, ϕ
′
+, ϕ

′
− and µ+, µ−, µ

′
+, µ

′
− are constructed from

s and s′ as above). Combining this fact with the identity (ε-STAB). it is an easy exercise to
show that (ε-STAB) remains true whatever the dimensions of ϕ and ϕ′ are (there need not
anymore be of distinct parities). Combining this with (m-STAB), we get the formula

m(ϕ, s;ϕ′, s′) = ε(µ+ϕ+⊗µ′−ϕ′−, ψ)ε(µ−ϕ−⊗µ′+ϕ′+, ψ) = ε(ϕs=1⊗ϕ′s
′=−1

, ψ)ε(ϕs=−1⊗ϕ′s
′=1
, ψ)

Obviously, we have

ε(ϕs=1 ⊗ ϕ′s
′=−1

, ψ)ε(ϕs=−1 ⊗ ϕ′s
′=1
, ψ) = ε(ϕ⊗ ϕ′s

′=−1
, ψ)ε(ϕs=−1 ⊗ ϕ′, ψ)ε(ϕs=−1 ⊗ ϕ′s

′=−1
, ψ)−2

= χϕ,ϕ′(s)χϕ′,ϕ(s′)ε(ϕs=−1 ⊗ ϕ′s
′=−1

, ψ)−2

Combined with the fact that ε(ϕs=−1 ⊗ ϕ′s
′=−1, ψ)2 = 1, this gives the desired result. �
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